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1 Electrodynamics and Special Relativity

1.1 Introduction

The final form of Maxwell’s equations describing the electromagnetic field had been es-

tablished by 1865. Although this was forty years before Einstein formulated his theory of

special relativity, the Maxwell equations are, remarkably, fully consistent with the special

relativity. The Maxwell theory of electromagnetism is the first, and in many ways the most

important, example of what is known as a classical relativistic field theory.

Our emphasis in this course will be on establishing the formalism within which the

relativistic invariance of electrodynamics is made manifest, and thereafter exploring the

relativistic features of the theory.

In Newtonian mechanics, the fundamental laws of physics, such as the dynamics of

moving objects, are valid in all inertial frames (i.e. all non-accelerating frames). If S is an

inertial frame, then the set of all inertial frames comprises all frames that are in uniform

motion relative to S. Suppose that two inertial frames S and S′, are parallel, and that their

origins coincide at at t = 0. If S′ is moving with uniform velocity ~v relative to S, then a

point P with position vector ~r with respect to S will have position vector ~r ′ with respect

to S′, where

~r ′ = ~r − ~v t . (1.1)

Of course, it is always understood in Newtonian mechanics that time is absolute, and so

the times t and t′ measured by observers in the frames S and S′ are the same:

t′ = t . (1.2)

The transformations (1.1) and (1.2) form part of what is called the Galilean Group. The

full Galilean group includes also rotations of the spatial Cartesian coordinate system, so

that we can define

~r ′ =M · ~r − ~v t , t′ = t , (1.3)

where M is an orthogonal 3 × 3 constant matrix acting by matrix multiplication on the

components of the position vector:

~r ↔




x

y

z


 , M · ~r ↔M




x

y

z


 , (1.4)

where MT M = 1.
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Returning to our simplifying assumption that the two frames are parallel, i.e. that

M = 1l, it follows that if a particle having position vector ~r in S moves with velocity

~u = d~r/dt, then its velocity ~u′ = d~r ′/dt as measured with respect to the frame S′ is given

by

~u′ = ~u− ~v . (1.5)

Suppose, for example, that ~v lies along the x axis of S; i.e. that S′ is moving along

the x axis of S with speed v = |~v|. If a beam of light were moving along the x axis of S

with speed c, then the prediction of Newtonian mechanics and the Galilean transformation

would therefore be that in the frame S′, the speed c′ of the light beam would be

c′ = c− v . (1.6)

Of course, as is well known, this contradicts experiment. As far as we can tell, with

experiments of ever-increasing accuracy, the true state of affairs is that the speed of the

light beam is the same in all inertial frames. Thus the predictions of Newtonian mechanics

and the Galilean transformation are falsified by experiment.

Of course, it should be emphasised that the discrepancies between experiment and the

Galilean transformations are rather negligible if the relative speed v between the two inertial

frames is of a typical “everyday” magnitude, such as the speed of a car or a plane. But if

v begins to become appreciable in comparison to the speed of light, then the discrepancy

becomes appreciable too.

By contrast, it turns out that Maxwell’s equations of electromagnetism do predict a

constant speed of light, independent of the choice of inertial frame. To be precise, let us

begin with the free-space Maxwell’s equations,

~∇ · ~E =
1

ǫ0
ρ , ~∇× ~B − µ0ǫ0

∂ ~E

∂t
= µ0 ~J ,

~∇ · ~B = 0 , ~∇× ~E +
∂ ~B

∂t
= 0 , (1.7)

where ~E and ~B are the electric and magnetic fields, ρ and ~J are the charge density and

current density, and ǫ0 and µ0 are the permittivity and permeability of free space.1

To see the electromagnetic wave solutions, we can consider a region of space where there

are no sources, i.e. where ρ = 0 and ~J = 0. Then we shall have

~∇× (~∇× ~E) = − ∂

∂t
~∇× ~B = −µ0ǫ0

∂2 ~E

∂t2
. (1.8)

1The equations here are written using the system of units known as SI, which could be said to stand for

“Super Inconvenient.” In these units, the number of unnecessary dimensionful “fundamental constants” is

maximised. We shall pass speedily to more convenient units a little bit later.
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But using the vector identity ~∇ × (~∇ × ~E) = ~∇(~∇ · ~E) − ∇2 ~E, it follows from ~∇ · ~E = 0

that the electric field satisfies the wave equation

∇2 ~E − µ0ǫ0
∂2 ~E

∂t2
= 0 . (1.9)

This admits plane-wave solutions of the form

~E = ~E0 e
i(~k·~r−ωt) , (1.10)

where ~E0 and ~k are constant vectors, and ω is also a constant, where

k2 = µ0ǫ0 ω
2 . (1.11)

Here k means |~k|, the magnitude of the wave-vector ~k. Thus we see that the waves travel

at speed c given by

c =
ω

k
=

1√
µ0ǫ0

. (1.12)

Putting in the numbers, this gives c ≈ 3× 108 metres per second, i.e. the familiar speed of

light.

A similar calculation shows that the magnetic field ~B also satisfies an identical wave

equation, and in fact ~B and ~E are related by

~B =
1

ω
~k × ~E . (1.13)

The situation, then, is that if the Maxwell equations (1.7) hold in a given frame of

reference, then they predict that the speed of light will be c ≈ 3 × 108 metres per second

in that frame. Therefore, if we assume that the Maxwell equations hold in all inertial

frames, then they predict that the speed of light will have that same value in all inertial

frames. Since this prediction is in agreement with experiment, we can reasonably expect

that the Maxwell equations will indeed hold in all inertial frames. Since the prediction

contradicts the implications of the Galilean transformations, it follows that the Maxwell

equations are not invariant under Galilean transformations. This is just as well, since the

Galilean transformations are wrong!

In fact, as we shall see, the transformations that correctly describe the relation between

observations in different inertial frames in uniform motion are the Lorentz Transformations

of Special Relativity. Furthermore, even though the Maxwell equations were written down in

the pre-relativity days of the nineteenth century, they are in fact perfectly invariant2 under

2Strictly, as will be explained later, we should say covariant rather than invariant.
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the Lorentz transformations. No further modification is required in order to incorporate

Maxwell’s theory of electromagnetism into special relativity.

However, the Maxwell equations as they stand, written in the form given in equation

(1.7), do not look manifestly covariant with respect to Lorentz transformations. This is

because they are written in the language of 3-vectors. To make the Lorentz transformations

look nice and simple, we should instead express them in terms of 4-vectors, where the extra

component is associated with the time direction.

Actually, before proceeding it is instructive to take a step back and look at what the

Maxwell equations actually looked like in Maxwell’s 1865 paper A Dynamical Theory of the

Electromagnetic Field, published in the Philosophical Transactions of the Royal Society of

London. It must be recalled that in 1865 three-dimensional vectors had not yet been in-

vented, and so everything was written out explicitly in terms of the x, y and z components.3

To make matters worse, Maxwell used a different letter of the alphabet for each component

of each field. In terms of the now-familiar electric vector fields ~E, ~D, the magnetic fields

~B, ~H, the current density ~J and the charge density ρ, Maxwell’s chosen names for the

components were

~E = (P,Q,R) , ~D = (f, g, h) ,

~B = (F,G,H) , ~H = (α, β, γ) ,

~J = (p, q, r) , ρ = e . (1.14)

Thus the Maxwell equations that we now write rather compactly as4

~∇ · ~D = 4πρ , ~∇ · ~B = 0 , (1.15)

~∇× ~H − ∂ ~D

∂t
= 4π ~J , ~∇× ~E +

∂ ~B

∂t
= 0 , (1.16)

took, in 1865, the highly inelegant forms

∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 4πe ,

∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 , (1.17)

for the two equations in (1.15), and

∂γ

∂y
− ∂β

∂z
− ∂f

∂t
= 4πp ,

3Vectors were invented independently by Josiah Willard Gibbs, and Oliver Heaviside, around the end of

the 19th century.
4Here, we are writing the equations in the so-called “Natural Units,” which we shall be using throughout

this course.
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∂α

∂z
− ∂γ

∂x
− ∂g

∂t
= 4πq ,

∂β

∂x
− ∂α

∂y
− ∂h

∂t
= 4πr ,

∂R

∂y
− ∂Q

∂z
+
∂F

∂t
= 0 ,

∂P

∂z
− ∂R

∂x
+
∂G

∂t
= 0 ,

∂Q

∂x
− ∂P

∂y
+
∂H

∂t
= 0 , (1.18)

for the two vector-valued equations in (1.16). Not only does Maxwell’s way of writing his

equations, in (1.17) and (1.18), look like a complete mess, but it also completely fails to

make manifest the familiar fact that the equations are symmetric under arbitrary rotations

of the three-dimensional (x, y, z) coordinate system. Of course in the 3-vector notation of

(1.15) and (1.16) this rotational symmetry is completely manifest; that is precisely what

the vectors notation was invented for, to make manifest the rotational symmetry of three-

dimensional equations like the Maxwell equations. The symmetry is, of course, actually

there in Maxwell’s equations (1.17) and (1.18), but it is completely obscure and non-obvious.

So the moral of the story is one not only wants equations that have the nice symmetries,

but one wants to write them in a notation that makes these symmetries manifest. It is

worth bearing this in mind when we pursue our goal of re-writing the Maxwell equations in

a notation that does even more, and makes their symmetry under Lorentz transformations

manifest. In order to give a nice elegant treatment of the Lorentz transformation properties

of the Maxwell equations, we should first therefore reformulate special relativity in terms

of 4-vectors and 4-tensors. Since there are many different conventions on offer in the mar-

ketplace, we shall begin with a review of special relativity in the notation that we shall be

using in this course.

1.2 The Lorentz Transformation

The derivation of the Lorentz transformation follows from Einstein’s two postulates:

• The laws of physics are the same for all inertial observers.

• The speed of light is the same for all inertial observers.

To derive the Lorentz transformation, let us suppose that we have two inertial frames

S and S′, whose origins coincide at time zero, that is to say, at t = 0 in the frame S, and
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at t′ = 0 in the frame S′. If a flash of light is emitted at the origin at time zero, then it will

spread out over a spherical wavefront given by

x2 + y2 + z2 − c2t2 = 0 (1.19)

in the frame S, and by

x′2 + y′2 + z′2 − c2t′2 = 0 (1.20)

in the frame S′. Note that, following the second of Einstein’s postulates, we have used the

same speed of light c for both inertial frames. Our goal is to derive the relation between

the coordinates (x, y, z, t) and (x′, y′, z′, t′) in the two inertial frames.

Consider for simplicity the case where S′ is parallel to S, and moves along the x axis

with velocity v. Clearly we must have

y′ = y , z′ = z . (1.21)

Furthermore, the transformation between (x, t) and (x′, t′) must be a linear one, since

otherwise it would not be translation-invariant or time-translation invariant. Thus we may

say that

x′ = Ax+Bt , t′ = Cx+Dt , (1.22)

for constants A, B , C and D to be determined.

Now, if x′ = 0, this must, by definition, correspond to the equation x = vt in the frame

S, and so from the first equation in (1.22) we have B = −Av, and so we have

x′ = A (x− vt) . (1.23)

By the same token, if we exchange the roles of the primed and the unprimed frames, and

consider the origin x = 0 for the frame S, then this will correspond to x′ = −vt′ in the

frame S′. (If the origin of the frame S′ moves along x in the frame S with velocity v, then

the origin of the frame S must be moving along x′ in the frame S′ with velocity −v.) It

follows that we must have

x = A (x′ + vt′) . (1.24)

Note that it must be the same constant A in both these equations, since the two really just

correspond to reversing the direction of the x axis, and the physics must be the same for

the two cases.

Now we bring in the postulate that the speed of light is the same in the two frames, so

if we have x = ct then this must imply x′ = ct′. Solving the resulting two equations

ct′ = A (c− v)t , ct = A (c + v)t′ (1.25)
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for A, we obtain

A =
1√

1− v2/c2
. (1.26)

Solving x2 − c2t2 = x′2 − c2t′2 for t′, after using (1.23), we find t′2 = A2 (t − vx/c2)2 and

hence

t′ = A (t− v

c2
x) . (1.27)

(We must choose the positive square root since it must reduce to t′ = +t if the velocity v

goes to zero.) At this point we shall change the name of the constant A to the conventional

one γ, and thus we arrive at the Lorentz transformation

x′ = γ(x− vt) , y′ = y , z′ = z , t′ = γ(t− v

c2
x) , (1.28)

where

γ =
1√

1− v2/c2
, (1.29)

in the special case where S′ is moving along the x direction with velocity v.

At this point, for notational convenience, we shall introduce the simplification of working

in a system of units in which the speed of light is set equal to 1. We can do this because the

speed of light is the same for all inertial observers, and so we may as well choose to measure

length in terms of the time it takes for light in vacuo to traverse the distance. In fact, the

metre is nowadays defined to be the distance travelled by light in vacuo in 1/299,792,458

of a second. By making the small change of taking the light-second as the basic unit of

length, rather than the 1/299,792,458′th of a light-second, we end up with a system of units

in which c = 1. Alternatively, we could measure time in “light metres,” where the unit is

the time taken for light to travel 1 metre. In these units, the Lorentz transformation (1.28)

becomes

x′ = γ(x− vt) , y′ = y , z′ = z , t′ = γ(t− vx) , (1.30)

where

γ =
1√

1− v2
. (1.31)

It will be convenient to generalise the Lorentz transformation (1.30) to the case where

the frame S′ is moving with (constant) velocity ~v in an arbitrary direction, rather than

specifically along the x axis. It is rather straightforward to do this. We know that there is a

complete rotational symmetry in the three-dimensional space parameterised by the (x, y, z)

coordinate system. Therefore, if we can first rewrite the special case described by (1.30) in

terms of 3-vectors, where the 3-vector velocity ~v happens to be simply ~v = (v, 0, 0), then
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generalisation will be immediate. It is easy to check that with ~v taken to be (v, 0, 0), the

Lorentz transformation (1.30) can be written as

~r ′ = ~r +
γ − 1

v2
(~v · ~r)~v − γ~v t , t′ = γ(t− ~v · ~r) , (1.32)

with γ = (1−v2)−1/2 and v ≡ |~v|, and with ~r = (x, y, z). Since these equations are manifestly

covariant under 3-dimensional spatial rotations (i.e. they are written entirely in a 3-vector

notation), it must be that they are the correct form of the Lorentz transformations for an

arbitrary direction for the velocity 3-vector ~v.

The Lorentz transformations (1.32) are what are called the pure boosts. It is easy to

check that they have the property of preserving the spherical light-front condition, in the

sense that points on the expanding spherical shell given by r2 = t2 of a light-pulse emitted

at the origin at t = 0 in the frame S will also satisfy the equivalent condition r′2 = t′2 in

the primed reference frame S′. (Note that r2 = x2 + y2 + z2.) In fact, a stronger statement

is true: The Lorentz transformation (1.32) satisfies the equation

x2 + y2 + z2 − t2 = x′2 + y′2 + z′2 − t′2 . (1.33)

1.3 An interlude on 3-vectors and suffix notation

Before describing the 4-dimensional spacetime approach to special relativity, it may be

helpful to give a brief review of some analogous properties of 3-dimensional Euclidean space,

and Cartesian vector analysis.

Consider a 3-vector ~A, with x, y and z components denoted by A1, A2 and A3 respec-

tively. Thus we may write

~A = (A1, A2, A3) . (1.34)

It is convenient then to denote the set of components by Ai, for i = 1, 2, 3.

The scalar product between two vectors ~A and ~B is given by

~A · ~B = A1B1 +A2B2 +A3B3 =
3∑

i=1

AiBi . (1.35)

This expression can be written more succinctly using the Einstein Summation Convention.

The idea is that when writing valid expressions using vectors, or more generally tensors,

on every occasion that a sumation of the form
∑3
i=1 is performed, the summand is an

expression in which the summation index i occurs exactly twice. Furthermore, there will

be no occasion when an index occurs exactly twice in a given term and a sum over i is

not performed. Therefore, we can abbreviate the writing by simply omitting the explicit
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summation symbol, since we know as soon as we see an index occuring exactly twice in a

term of an equation that it must be accompanied by a summation symbol. Thus we can

abbreviate (1.35) and just write the scalar product as

~A · ~B = AiBi . (1.36)

The index i here is called a “dummy suffix.” It is just like a local summation variable in

a computer program; it doesn’t matter if it is called i, or j or anything else, as long as it

doesn’t clash with any other index that is already in use.

The next concept to introduce is the Kronecker delta tensor δij . This is defined by

δij = 1 if i = j , δij = 0 if i 6= j , (1.37)

Thus

δ11 = δ22 = δ33 = 1 , δ12 = δ13 = · · · = 0 . (1.38)

Note that δij is a symmetric tensor: δij = δji. The Kronecker delta clearly has the replace-

ment property

Ai = δijAj , (1.39)

since by (1.37) the only non-zero term in the summation over j is the term when j = i.

Now consider the vector product ~A× ~B. We have

~A× ~B = (A2B3 −A3B2, A3B1 −A1B3, A1B2 −A2B1) . (1.40)

To write this using index notation, we first define the 3-index totally-antisymmetric ten-

sor ǫijk. Total antisymmetry means that the tensor changes sign if any pair of indices is

swapped. For example

ǫijk = −ǫikj = −ǫjik = −ǫkji . (1.41)

Given this total antisymmetry, we actually only need to specify the value of one non-zero

component in order to pin down the definition completely. We shall define ǫ123 = +1. From

the total antisymmetry, it then follows that

ǫ123 = ǫ231 = ǫ312 = +1 , ǫ132 = ǫ321 = ǫ213 = −1 , (1.42)

with all other components vanishing.

It is now evident that in index notation, the i’th component of the vector product ~A× ~B

can be written as

( ~A× ~B)i = ǫijkAjBk . (1.43)
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For example, the i = 1 component (the x component) is given by

( ~A× ~B)1 = ǫ1jkAjBk = ǫ123A2B3 + ǫ132A3B2 = A2B3 −A3B2 , (1.44)

in agreement with the x-component given in (1.40).

Now, let us consider the vector triple product ~A×( ~B× ~C). The i component is therefore

given by

[ ~A× ( ~B × ~C)]i = ǫijkAj( ~B × ~C)k = ǫijkǫkℓmAjBℓCm . (1.45)

For convenience, we may cycle the indices on the second ǫ tensor around and write this as

[ ~A× ( ~B × ~C)]i = ǫijkǫℓmkAjBℓCm . (1.46)

There is an extremely useful identity, which can be proved simply by considering all possible

values of the free indices i, j, ℓ,m:

ǫijkǫℓmk = δiℓδjm − δimδjℓ . (1.47)

Using this in (1.46), we have

[ ~A× ( ~B × ~C)]i = (δiℓδjm − δimδjℓ)AjBℓCm ,

= δiℓδjmAjBℓCm − δimδjℓAjBℓCm ,

= BiAjCj − CiAjBj ,

= ( ~A · ~C)Bi − ( ~A · ~B)Ci . (1.48)

In other words, we have proven that

~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C . (1.49)

It is useful also to apply the index notation to the gradient operator ~∇. This is a

vector-valued differential operator, whose components are given by

~∇ =
( ∂
∂x
,
∂

∂y
,
∂

∂z

)
. (1.50)

In terms of the index notation, we may therefore say that the i’th component (~∇)i of the

vector ~∇ is given by ∂/∂xi. In order to make the writing a little less clumsy, it is useful to

rewrite this as

∂i =
∂

∂xi
. (1.51)

Thus, the i’th component of ~∇ is ∂i.
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It is now evident that the divergence and the curl of a vector ~A can be written in index

notation as

div ~A = ~∇ · ~A = ∂iAi , (curl ~A)i = (~∇× ~A)i = ǫijk∂jAk . (1.52)

The Laplacian, ∇2 = ~∇ · ~∇ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, is given by

∇2 = ∂i∂i . (1.53)

By the rules of partial differentiation, we have ∂ixj = δij . If we consider the position

vector ~r = (x, y, z), then we have r2 = x2 + y2 + z2, which can be written as

r2 = xjxj . (1.54)

If we now act with ∂i on both sides, we get

2r ∂ir = 2xj ∂ixj = 2xj δij = 2xi . (1.55)

Thus we have the very useful result that

∂ir =
xi
r
. (1.56)

So far, we have not given any definition of what a 3-vector actually is, and now is the

time to remedy this. We may define a 3-vector ~A as an ordered triplet of real quantities,

~A = (A1, A2, A3), which transforms under rigid rotations of the Cartesian axes in the same

way as does the position vector ~r = (x, y, z). Now, any rigid rotation of the Cartesian

coordinate axes can be expressed as a constant 3 × 3 orthogonal matrix M acting on the

column vector whose components are x, y and z:




x′

y′

z′


 = M




x

y

z


 , (1.57)

where

MT M = 1 . (1.58)

An example would be the matrix describing a rotation by a (constant) angle θ around the

z axis, for which we would have

M =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 . (1.59)
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Matrices satisfying the equation (1.58) are called orthogonal matrices. If they are of

dimension n× n, they are called O(n) matrices. Thus the 3-dimensional rotation matrices

are called O(3) matrices.5

In index notation, we can write M as Mij , where i labels the rows and j labels the

columns:

M =




M11 M12 M13

M21 M22 M23

M31 M32 M33


 . (1.60)

The rotation (1.57) can then be expressed as

x′i =Mij xj , (1.61)

and the orthogonality condition (1.58) is

MkiMkj = δij . (1.62)

(Note that if M has components Mij then its transpose MT has components Mji.)

As stated above, the components of any 3-vector transform the same way under rotations

as do the components of the position vector ~r. Thus, if ~A and ~B are 3-vectors, then after

a rotation by the matrix M we shall have

A′
i =Mij Aj , B′

i =Mij Bj . (1.63)

If we calculate the scalar product of ~A and ~B after the rotation, we shall therefore have

A′
iB

′
i =MijAjMikBk . (1.64)

(Note the choice of a different dummy suffix in the expression for B′
i!) Using the orthogo-

nality condition (1.62), we therefore have that

A′
iB

′
i = AjBkδjk = AjBj . (1.65)

Thus the scalar product of any two 3-vectors is invariant under rotations of the coordinate

axes. That is to say, AiBi is a scalar quantity, and by definition a scalar is invariant under

rotations.
5There is a little subtlety that we have glossed over, here. If we take the determinant of (1.58), and

use the facts that det(AB) = (detA)(detB) and det(AT ) = detA, we see that (detM)2 = 1 and hence

detM = ±1. The matrices with detM = +1 are called SO(n) matrices in n dimensions, where the “S”

stands for “special,” meaning unit determinant. It is actually SO(n) matrices that are pure rotations. The

transformations with detM = −1 are actually rotations combined with a reflection of the coordinates (such

as x→ −x). Thus, the pure rotation group in 3 dimensions is SO(3).
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It is useful to count up how many independent parameters are needed to specify the

most general possible rotation matrix M. Looking at (1.60), we can see that a general 3×3

matrix has 9 components. But our matrix M is required to be orthogonal, i.e. it must

satisfy MT M − 1 = 0. How many equations does this amount to? Naively, it is a 3 × 3

matrix equation, and so implies 9 conditions. But this is not correct, since the left-hand

side of MT M− 1 = 0 is in fact a symmetric matrix. (Take the transpose, and verify this.)

A 3 × 3 symmetric matrix has (3 × 4)/2 = 6 independent components, and so setting a

symmetric 3 × 3 matrix to zero implies only 6 independent equations rather than 9. Thus

the orthogonality condition imposes 6 constraints on the 9 components of a general 3 × 3

matrix, and so that leaves

9− 6 = 3 (1.66)

as the number of independent components of a 3 × 3 orthogonal matrix, It is easy to see

that this is the correct counting; to specify a general rotation in 3-dimensional space, we

need two angles to specify an axis (for example, the latitude and longitude), and a third

angle to specify the rotation around that axis.

The above are just a few simple examples of the use of index notation in order to write

3-vector and 3-tensor expressions in Cartesian 3-tensor analysis. It is a very useful notation

when one needs to deal with complicated expressions. As we shall now see, there is a very

natural generalisation to the case of vector and tensor analysis in 4-dimensional Minkowski

spacetime.

1.4 4-vectors and 4-tensors

The Lorentz transformations given in (1.32) are linear in the space and time coordinates.

They can be written more succinctly if we first define the set of four spacetime coordinates

denoted by xµ, where µ is an index, or label, that ranges over the values 0, 1, 2 and 3. The

case µ = 0 corresponds to the time coordinate t, while µ = 1, 2 and 3 corresponds to the

space coordinates x, y and z respectively. Thus we have6

(x0, x1, x2, x3) = (t, x, y, z) . (1.67)

Of course, once the abstract index label µ is replaced, as here, by the specific index values

0, 1, 2 and 3, one has to be very careful when reading a formula to distinguish between, for

6The choice to put the index label µ as a superscript, rather than a subscript, is purely conventional. But,

unlike the situation with many arbitrary conventions, in this case the coordinate index is placed upstairs in

all modern literature.
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example, x2 meaning the symbol x carrying the spacetime index µ = 2, and x2 meaning

the square of x. It should generally be obvious from the context which is meant.

The invariant quadratic form appearing on the left-hand side of (1.33) can now be

written in a nice way, if we first introduce the 2-index quantity ηµν , defined by

η00 = −1 , η11 = η22 = η33 = 1 , (1.68)

with ηµν = 0 if µ 6= ν. Note that ηµν is symmetric:

ηµν = ηνµ . (1.69)

Using ηµν , the quadratic form on the left-hand side of (1.33) can be rewritten as

x2 + y2 + z2 − t2 =
3∑

µ=0

3∑

ν=0

ηµν x
µxν . (1.70)

In the same way as we previously associated 2-index objects in 3-dimensional Euclidean

space with 3× 3 matrices, so here too we can associate ηµν with a 4× 4 matrix ηηη:

ηηη =




η00 η01 η02 η03

η10 η11 η12 η13

η20 η21 η22 η23

η30 η31 η32 η33




=




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



. (1.71)

Thus one can think of the rows of the matrix on the right as being labelled by the index µ

and the columns being labelled by the index ν.

At this point, it is convenient again to introduce the Einstein Summation Convention,

now for four-dimensional spacetime indices. This makes the writing of expressions such as

(1.70) much less cumbersome. The summation convention works as follows:

In an expression such as (1.70), if an index appears exactly twice in a term, then it will

be understood that the index is summed over the natural index range (0, 1, 2, 3 in our

present case), and the explicit summation symbol will be omitted. An index that occurs

twice in a term, thus is understood to be summed over, is called a Dummy Index.

Since in (1.70) both µ and ν occur exactly twice, we can rewrite the expression, using

the Einstein summation convention, as simply

x2 + y2 + z2 − t2 = ηµν x
µxν . (1.72)

On might at first think there would be a great potential for ambiguity, but this is not the

case. The point is that in any valid vectorial (or, more generally, tensorial) expression, the
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only time that a particular index can ever occur exactly twice in a term is when it is summed

over. Thus, there is no ambiguity resulting from agreeing to omit the explicit summation

symbol, since it is logically inevitable that a summation is intended.7 Note that the pair of

dummy indices will always occur with one index upstairs and the other downstairs, in any

valid expression.

Now let us return to the Lorentz transformations. The pure boosts written in (1.32),

being linear in the space and time coordinates, can be written in the form

x′µ = Λµν x
ν , (1.73)

where Λµν are constants, and the Einstein summation convention is operative for the dummy

index ν. By comparing (1.73) carefully with (1.32), we can see that the components Λµν

are given by

Λ0
0 = γ , Λ0

i = −γvi ,

Λi0 = −γ vi , Λij = δij +
γ − 1

v2
vivj , (1.74)

where δij is the Kronecker delta symbol,

δij = 1 if i = j , δij = 0 if i 6= j . (1.75)

A couple of points need to be explained here. Firstly, we are introducing Latin indices here,

namely the i and j indices, which range only over the three spatial index values, i = 1, 2

and 3. Thus the 4-index µ can be viewed as µ = (0, i), where i = 1, 2 and 3. This piece

of notation is useful because the three spatial index values always occur on a completely

symmetric footing, whereas the time index value µ = 0 is a bit different. This can be seen,

for example, in the definition of ηµν in (1.71) or (1.68).

The second point is that when we consider spatial indices (for example when µ takes the

values i = 1, 2 or 3), it actually makes no difference whether we write the index i upstairs

or downstairs. Sometimes, as in (1.74), it will be convenient to be rather relaxed about

whether we put spatial indices upstairs or downstairs. By contrast, when the index takes

the value 0, it is very important to be careful about whether it is upstairs or downstairs.

7As a side remark, it should be noted that in a valid vectorial or tensorial expression, a specific index can

NEVER appear more than twice in a given term. If you have written down a term where a given index

occurs 3, 4 or more times then there is no need to look further at it; it is WRONG. Thus, for example, it

is totally meaningless to write ηµµ x
µxµ. If you ever find such an expression in a calculation then you must

stop, and go back to find the place where an error was made.
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The reason why we can be cavalier about the Latin indices, but not the Greek, will become

clearer as we proceed.

We already saw that the Lorentz boost transformations (1.32), re-expressed in terms of

Λµν in (1.74), have the property that ηµν x
µxν = ηµν x

′µx′ν . Thus from (1.73) we have

ηµν x
µxν = ηµν Λ

µ
ρΛ

ν
σ x

ρxσ . (1.76)

(Note that we have been careful to choose two different dummy indices for the two implicit

summations over ρ and σ!) On the left-hand side, we can replace the dummy indices µ and

ν by ρ and σ, and thus write

ηρσ x
ρxσ = ηµν Λ

µ
ρ Λ

ν
σ x

ρxσ . (1.77)

This can be grouped together as

(ηρσ − ηµν Λ
µ
ρ Λ

ν
σ)x

ρxσ = 0 , (1.78)

and, since it is true for any xµ, we must have that

ηµν Λ
µ
ρΛ

ν
σ = ηρσ . (1.79)

(This can also be verified directly from (1.74).) The full set of Λ’s that satisfy (1.79) are

the Lorentz Transformations. The Lorentz Boosts, given by (1.74), are examples, but they

are just a subset of the full set of Lorentz transformations that satisfy (1.79). Essentially,

the additional Lorentz transformations consist of rotations of the three-dimensional spatial

coordinates. Thus, one can really say that the Lorentz boosts (1.74) are the “interesting”

Lorentz transformations, i.e. the ones that rotate space and time into one another. The

remainder are just rotations of our familiar old 3-dimensional Euclidean space.

We can count the number of independent parameters in a general Lorentz transformation

in the same way we did for the 3-dimensional rotations in the previous section. We start

with Λµν , which can be thought of as a 4× 4 matrix with rows labelled by µ and columns

labelled by ν. Thus

Λµν −→ Λ =




Λ0
0 Λ0

1 Λ0
2 Λ0

3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3



. (1.80)

These 4 × 4 = 16 components are subject to the conditions (1.79). In matrix notation,

(1.79) clearly translates into

ΛT ηΛ− η = 0 . (1.81)
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This is itself a 4× 4 matrix equation, but not all its components are independent since the

left-hand side is a symmetric matrix. (Verify this by taking its transpose.) Thus (1.81)

contains (4 × 5)/2 = 10 independent conditions, implying that the most general Lorentz

transformation has

16− 10 = 6 (1.82)

independent parameters.

Notice that if η had been simply the 4 × 4 unit matrix, then (1.81) would have been a

direct 4-dimensional analogue of the 3-dimensional orthogonality condition (1.58). In other

words, were it not for the minus sign in the 00 component of η, the Lorentz transformations

would just be spatial rotations in 4 dimensions, and they would be elements of the group

O(4). The counting of the number of independent such transformations would be identical

to the one given above, and so the group O(4) of orthogonal 4× 4 matrices is characterised

by 6 independent parameters.

Because of the minus sign in η, the group of 4 × 4 matrices satisfying (1.81) is called

O(1, 3), with the numbers 1 and 3 indicating the number of time and space dimensions

respectively. Thus the four-dimensional Lorentz Group is O(1, 3).

Obviously, the subset of Λ matrices of the form

Λ =

(
1 0

0 M

)
, which is shorthand for Λ =




1 0 0 0

0 M11 M12 M13

0 M21 M22 M23

0 M31 M32 M33




(1.83)

where M is any 3× 3 orthogonal matrix, satisfies (1.81). This O(3) subgroup of the O(1, 3)

Lorentz group describes the pure rotations (and reflections) in the 3-dimensional spatial

directions. The 3 parameters characterising these transformations, together with the 3

parameters of the velocity vector characterising the pure boost Lorentz transformations

(1.74), comprise the total set of 3+3 = 6 parameters of the general Lorentz transformations.

The coordinates xµ = (x0, xi) live in a four-dimensional spacetime, known as Minkowski

Spacetime. This is the four-dimensional analogue of the three-dimensional Euclidean Space

described by the Cartesian coordinates xi = (x, y, z). The quantity ηµν is called the

Minkowski Metric, and for reasons that we shall see presently, it is called a tensor. It is

called a metric because it provides the rule for measuring distances in the four-dimensional

Minkowski spacetime. The distance, or to be more precise, the interval, between two

infinitesimally-separated points (x0, x1, x2, x3) and (x0 + dx0, x1 + dx1, x2 + dx2, x3 + dx3)
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in spacetime is written as ds, and is given by

ds2 = ηµν dx
µdxν . (1.84)

Clearly, this is the Minkowskian generalisation of the three-dimensional distance dsE be-

tween neighbouring points (x, y, z) and (x+ dx, y + dy, z + dz) in Euclidean space, which,

by Pythagoras’ theorem, is given by

ds2E = dx2 + dy2 + dz2 = δij dx
idxj . (1.85)

The Euclidean metric (1.85) is invariant under arbitrary constant rotations of the (x, y, z)

coordinate system. (This is clearly true because the distance between the neighbouring

points must obviously be independent of how the axes of the Cartesian coordinate system

are oriented.) By the same token, the Minkowski metric (1.84) is invariant under arbitrary

Lorentz transformations. In other words, as can be seen to follow immediately from (1.79),

the spacetime interval ds′2 = ηµν dx
′µdx′ν calculated in the primed frame is identical to the

interval ds2 calculated in the unprimed frame

ds′2 = ηµν dx
′µdx′ν = ηµν Λ

µ
ρ Λ

ν
σ dx

ρdxσ ,

= ηρσ dx
ρdxσ = ds2 . (1.86)

For this reason, we do not need to distinguish between ds2 and ds′2, since it is the same in

all inertial frames. It is what is called a Lorentz Scalar.

The Lorentz transformation rule of the coordinate differential dxµ, i.e.

dx′µ = Λµν dx
ν , (1.87)

can be taken as the prototype for more general 4-vectors. Thus, we may define any set

of four quantities Uµ, for µ = 0, 1, 2 and 3, to be the components of a Lorentz 4-vector

(often, we shall just abbreviate this to simply a 4-vector) if they transform, under Lorentz

transformations, according to the rule

U ′µ = Λµν U
ν . (1.88)

The Minkowski metric ηµν may be thought of as a 4×4 matrix, whose rows are labelled

by µ and columns labelled by ν, as in (1.71). Clearly, the inverse of this matrix takes

the same form as the matrix itself. We denote the components of the inverse matrix by

ηµν . This is called, not surprisingly, the inverse Minkowksi metric. Clearly it satisfies the

relation

ηµν η
νρ = δρµ , (1.89)

21



where the 4-dimensional Kronecker delta is defined to equal 1 if µ = ρ, and to equal 0 if

µ 6= ρ. Note that like ηµν , the inverse ηµν is symmetric also: ηµν = ηνµ.

The Minkowksi metric and its inverse may be used to lower or raise the indices on other

quantities. Thus, for example, if Uµ are the components of a 4-vector, then we may define

Uµ = ηµν U
ν . (1.90)

This is another type of 4-vector. Two distinguish the two, we call a 4-vector with an upstairs

index a contravariant 4-vector, while one with a downstairs index is called a covariant 4-

vector. Note that if we raise the lowered index in (1.90) again using ηµν , then we get back

to the starting point:

ηµν Uν = ηµν ηνρ U
ρ = δµρ U

ρ = Uµ . (1.91)

It is for this reason that we can use the same symbol U for the covariant 4-vector Uµ = ηµν U
ν

as we used for the contravariant 4-vector Uµ.

In a similar fashion, we may define the quantities Λµ
ν by

Λµ
ν = ηµρ η

νσ Λρσ . (1.92)

It is then clear that (1.79) can be restated as

Λµν Λµ
ρ = δρν . (1.93)

We can also then invert the Lorentz transformation x′µ = Λµν x
ν to give

xµ = Λν
µ x′ν . (1.94)

It now follows from (1.88) that the components of the covariant 4-vector Uµ defined by

(1.90) transform under Lorentz transformations according to the rule

U ′
µ = Λµ

ν Uν . (1.95)

Any set of 4 quantities Uµ which transform in this way under Lorentz transformations will

be called a covariant 4-vector.

Using (1.94), we can see that the gradient operator ∂/∂xµ transforms as a covariant

4-vector. Using the chain rule for partial differentiation we have

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
. (1.96)

But from (1.94) we have (after a relabelling of indices) that

∂xν

∂x′µ
= Λµ

ν , (1.97)
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and hence (1.96) gives
∂

∂x′µ
= Λµ

ν ∂

∂xν
. (1.98)

As can be seen from (1.95), this is precisely the transformation rule for a a covariant 4-

vector. The gradient operator arises sufficiently often that it is useful to use a special symbol

to denote it. We therefore define

∂µ ≡ ∂

∂xµ
. (1.99)

Thus the Lorentz transformation rule (1.98) is now written as

∂′µ = Λµ
ν ∂ν . (1.100)

1.5 Lorentz tensors

Having seen how contravariant and covariant 4-vectors transform under Lorentz transfor-

mations (as given in (1.88) and (1.95) respectively), we can now define the transformation

rules for more general objects called tensors. These objects carry multiple indices, and each

one transforms with a Λ factor, of either the (1.88) type if the index is upstairs, or of the

(1.95) type if the index is downstairs. Thus, for example, a tensor Tµν transforms under

Lorentz transformations according to the rule

T ′
µν = Λµ

ρΛν
σ Tρσ . (1.101)

More generally, a tensor T µ1···µmν1···νn will transform according to the rule

T ′µ1···µm
ν1···νn = Λµ1ρ1 · · ·Λµmρm Λν1

σ1 · · ·Λνnσn T ρ1···ρmσ1···σn . (1.102)

Note that scalars are just special cases of tensors with no indices, while vectors are special

cases with just one index.

It is easy to see that products of tensors give rise again to tensors. For example, if Uµ

and V µ are two contravariant vectors then T µν ≡ UµV ν is a tensor, since, using the known

transformation rules for U and V we have

T ′µν = U ′µV ′ν = Λµρ U
ρ Λνσ V

σ ,

= Λµρ Λ
ν
σ T

ρσ . (1.103)

Note that the gradient operator ∂µ can also be used to map a tensor into another

tensor. For example, if Uµ is a vector field (i.e. a vector that changes from place to place in

spacetime) then Sµν ≡ ∂µUν is a tensor field.
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We make also define the operation of Contraction, which reduces a tensor to one with

a smaller number of indices. A contraction is performed by setting an upstairs index on a

tensor equal to a downstairs index. The Einstein summation convention then automatically

comes into play, and the result is that one has an object with one fewer upstairs indices and

one fewer downstairs indices. Furthermore, a simple calculation shows that the new object

is itself a tensor. Consider, for example, a tensor T µν . This, of course, transforms as

T ′µ
ν = ΛµρΛν

σ T ρσ (1.104)

under Lorentz transformations. If we form the contraction and define φ ≡ T µµ, then we see

that under Lorentz transformations we shall have

φ′ ≡ T ′µ
µ = Λµρ Λµ

σ T ρσ ,

= δσρ T
ρ
σ = φ . (1.105)

Since φ′ = φ, it follows, by definition, that φ is a scalar.

An essentially identical calculation shows that for a tensor with arbitrary numbers of

upstairs and downstairs indices, if one makes an index contraction of one upstairs with one

downstairs index, the result is a tensor with the corresponding reduced numbers of indices.

Of course multiple contractions work in the same way.

The Minkowski metric ηµν is itself a tensor, but of a rather special type, known as an

invariant tensor. This is because, unlike a generic 2-index tensor, the Minkowski metric is

identical in all Lorentz frames. This can be seen from (1.79), which can be rewritten as the

statement8

η′µν ≡ Λµ
ρΛν

σ ηρσ = ηµν . (1.106)

The same is also true for the inverse metric ηµν .

We already saw that the gradient operator ∂µ ≡ ∂/∂xµ transforms as a covariant vector.

If we define, in the standard way, ∂µ ≡ ηµν ∂ν , then it is evident from what we have seen

above that the operator

≡ ∂µ∂µ = ηµν ∂µ∂ν (1.107)

8This can be seen by first writing (1.79) in matrix language as ΛT ηΛ = η. Then right-multiply by

Λ−1 and left-multiply by η−1; this gives η−1 ΛT η = Λ−1. Next left-multiply by Λ and right-multiply by

η−1, which gives Λ η−1 ΛT = η−1. (This is the analogue for the Lorentz transformations of the proof, for

rotations, that MT M = 1 implies MMT = 1.) Converting back to index notation gives Λµ
ρ Λ

ν
σ η

ρσ = ηµν .

After some index raising and lowering, this gives Λµ
ρ Λν

σ ηρσ = ηµν , which is the required result.
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transforms as a scalar under Lorentz transformations. This is a very important operator,

which is otherwise known as the wave operator, or d’Alembertian:

= −∂0∂0 + ∂i∂i = − ∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.108)

It is worth commenting further at this stage about a remark that was made earlier.

Notice that in (1.108) we have been cavalier about the location of the Latin indices, which

of course range only over the three spatial directions i = 1, 2 and 3. We can get away with

this because the metric that is used to raise or lower the Latin indices is just the Minkowski

metric restricted to the index values 1, 2 and 3. But since we have

η00 = −1 , ηij = δij , η0i = ηi0 = 0 , (1.109)

this means that Latin indices are lowered and raised using the Kronecker delta δij and

its inverse δij . But these are just the components of the unit matrix, and so raising or

lowering Latin indices has no effect. It is because of the minus sign associated with the η00

component of the Minkowski metric that we have to pay careful attention to the process of

raising and lowering Greek indices. Thus, we can get away with writing ∂i∂i, but we cannot

write ∂µ∂µ.

1.6 Proper time and 4-velocity

We defined the Lorentz-invariant interval ds between infinitesimally-separated spacetime

events by

ds2 = ηµν dx
µdxν = −dt2 + dx2 + dy2 + dz2 . (1.110)

This is the Minkowskian generalisation of the spatial interval in Euclidean space. Note that

ds2 can be positive, negative or zero. These cases correspond to what are called spacelike,

timelike or null separations, respectively.

On occasion, it is useful to define the negative of ds2, and write

dτ2 = −ds2 = −ηµν dxµdxν = dt2 − dx2 − dy2 − dz2 . (1.111)

This is called the Proper Time interval, and τ is the proper time. Since ds is a Lorentz

scalar, it is obvious that dτ is a scalar too.

We know that dxµ transforms as a contravariant 4-vector. Since dτ is a scalar, it follows

that

Uµ ≡ dxµ

dτ
(1.112)
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is a contravariant 4-vector also. If we think of a particle following a path, or worldline in

spacetime parameterised by the proper time τ , i.e. it follows the path xµ = xµ(τ), then Uµ

defined in (1.112) is called the 4-velocity of the particle.

It is useful to see how the 4-velocity is related to the usual notion of 3-velocity of a

particle. By definition, the 3-velocity ~u is a 3-vector with components ui given by

ui =
dxi

dt
. (1.113)

From (1.111), it follows that

dτ2 = dt2[1− (dx/dt)2 − (dy/dt)2 − (dz/dt)2)] = dt2(1− u2) , (1.114)

where u = |~u|, or in other words, u =
√
uiui. In view of the definition of the γ factor in

(1.31), it is natural to define

γ ≡ 1√
1− u2

. (1.115)

Thus we have dτ = dt/γ, and so from (1.112) the 4-velocity can be written as

Uµ =
dt

dτ

dxµ

dt
= γ

dxµ

dt
. (1.116)

Since dx0/dt = 1 and dxi/dt = ui, we therefore have that

U0 = γ , U i = γ ui . (1.117)

Note that UµUµ = −1, since, from (1.111), we have

UµUµ = ηµνU
µUν =

ηµνdx
µdxν

(dτ)2
=

−(dτ)2

(dτ)2
= −1 . (1.118)

We shall sometimes find it convenient to rewrite (1.117) as

Uµ = (γ, γ ui) or Uµ = (γ, γ ~u) . (1.119)

Having set up the 4-vector formalism, it is now completely straightforward write down

how velocities transform under Lorentz transformations. We know that the 4-velocity Uµ

will transform according to (1.88), and this is identical to the way that the coordinates xµ

transform:

U ′µ = Λµν U
ν , x′µ = Λµν x

ν . (1.120)

Therefore, if we want to know how the 3-velocity transforms, we need only write down

the Lorentz transformations for (t, x, y, z), and then replace (t, x, y, z) by (U0, U1, U2, U3).

Finally, using (1.119) to express (U0, U1, U2, U3) in terms of ~u will give the result.
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Consider, for simplicity, the case where S′ is moving along the x axis with velocity v.

The Lorentz transformation for Uµ can therefore be read off from (1.30) and (1.31):

U ′0 = γv (U
0 − vU1) ,

U ′1 = γv (U
1 − vU0) ,

U ′2 = U2 ,

U ′3 = U3 , (1.121)

where we are now using γv ≡ (1 − v2)−1/2 to denote the gamma factor of the Lorentz

transformation, to distinguish it from the γ constructed from the 3-velocity ~u of the particle

in the frame S, which is defined in (1.115). Thus from (1.119) we have

γ′ = γ γv (1− vux) ,

γ′ u′x = γ γv (ux − v) ,

γ′ u′y = γ uy ,

γ′ u′z = γ uz , (1.122)

where, of course, γ′ = (1− u′2)−1/2 is the analogue of γ in the frame S′. Thus we find

u′x =
ux − v

1− vux
, u′y =

uy
γv (1− vux)

, u′z =
uz

γv (1− vux)
. (1.123)

2 Electrodynamics and Maxwell’s Equations

2.1 Natural units

We saw earlier that the supposition of the universal validity of Maxwell’s equations in all

inertial frames, which in particular would imply that the speed of light should be the same in

all frames, is consistent with experiment. It is therefore reasonable to expect that Maxwell’s

equations should be compatible with special relativity. However, written in their standard

form (1.7), this compatibility is by no means apparent. Our next task will be to re-express

the Maxwell equations, in terms of 4-tensors, in a way that makes their Lorentz covariance

manifest.

We shall begin by changing units from the S.I. system in which the Maxwell equations

are given in (1.7). The first step is to change to Gaussian units, by performing the rescalings

~E −→ 1√
4πǫ0

~E , ~B −→
√
µ0
4π

~B ,

ρ −→
√
4πǫ0 ρ , ~J −→

√
4πǫ0 ~J . (2.1)
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Bearing in mind that the speed of light is given by c = 1/
√
µ0ǫ0, we see that the Maxwell

equations (1.7) become

~∇ · ~E = 4π ρ , ~∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J ,

~∇ · ~B = 0 , ~∇× ~E +
1

c

∂ ~B

∂t
= 0 , (2.2)

Finally, we pass from Gaussian units to Natural units, by choosing our units of length and

time so that c = 1, as we did in our discussion of special relativity. Thus, in natural units,

the Maxwell equations become

~∇ · ~E = 4π ρ , ~∇× ~B − ∂ ~E

∂t
= 4π ~J , (2.3)

~∇ · ~B = 0 , ~∇× ~E +
∂ ~B

∂t
= 0 , (2.4)

The equations (2.3), which have sources on the right-hand side, are called the Field Equa-

tions. The equations (2.4) are called Bianchi Identities. We shall elaborate on this a little

later.

2.2 Gauge potentials and gauge invariance

We already remarked that the two Maxwell equations (2.4) are know as Bianchi identities.

They are not field equations, since there are no sources; rather, they impose constraints on

the electric and magnetric fields. The first equation in (2.4), i.e. ~∇ · ~B = 0, can be solved

by writing

~B = ~∇× ~A , (2.5)

where ~A is the magnetic 3-vector potential. Note that (2.5) identically solves ~∇ · ~B = 0,

because of the vector identity that div curl ≡ 0. Substituting (2.5) into the second equation

in (2.4), we obtain

~∇×
(
~E +

∂ ~A

∂t

)
= 0 . (2.6)

This can be solved, again identically, by writing

~E +
∂ ~A

∂t
= −~∇φ , (2.7)

where φ is the electric scalar potential. Thus we can solve the Bianchi identities (2.4) by

writing ~E and ~B in terms of scalar and 3-vector potentials φ and ~A:

~E = −~∇φ− ∂ ~A

∂t
, ~B = ~∇× ~A . (2.8)
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Although we have now “disposed of” the two Maxwell equations in (2.4), it has been

achieved at a price, in that there is a redundancy in the choice of gauge potentials φ and

~A. First, we may note that that ~B in (2.8) is unchanged if we make the replacement

~A −→ ~A+ ~∇λ , (2.9)

where λ is an arbitrary function of position and time. The expression for ~E will also be

invariant, if we simultaneously make the replacement

φ −→ φ− ∂λ

∂t
. (2.10)

To summarise, if a given set of electric and magnetic fields ~E and ~B are described by a

scalar potential φ and 3-vector potential ~A according to (2.8), then the identical physical

situation (i.e. identical electric and magnetic fields) is equally well described by a new pair

of scalar and 3-vector potentials, related to the original pair by the Gauge Transformations

given in (2.9) and (2.10), where λ is an arbitrary function of position and time.

We can in fact use the gauge invariance to our advantage, by making a convenient

and simplifying gauge choice for the scalar and 3-vector potentials. We have one arbitrary

function (i.e. λ(t, ~r)) at our disposal, and so this allows us to impose one functional relation

on the potentials φ and ~A. For our present purposes, the most useful gauge choice is to use

this freedom to impose the Lorenz gauge condition,9

~∇ · ~A+
∂φ

∂t
= 0 . (2.11)

Substituting (2.8) into the remaining Maxwell equations (i.e. (2.3), and using the Lorenz

gauge condition (2.11), we therefore find

∇2φ− ∂2φ

∂t2
= −4πρ ,

∇2 ~A− ∂2 ~A

∂t2
= −4π ~J . (2.12)

The important thing, which we shall make use of shortly, is that in each case we have on

the left-hand side the d’Alembertian operator = ∂µ∂µ, which we discussed earlier.

9Note that, contrary to the belief of many physicists, this gauge choice was introduced by the Danish

physicist Ludvig Lorenz, and not the Dutch physicist Hendrik Lorentz who is responsible for the Lorentz

transformation. Adding to the confusion is that unlike many other gauge choices that one encounters, the

Lorenz gauge condition is, as we shall see later, Lorentz invariant.
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2.3 Maxwell’s equations in 4-tensor notation

The next step is to write the Maxwell equations in terms of four-dimensional quantities.

Since the 3-vectors ~E and ~B describing the electric and magnetic fields have three compo-

nents each, there is clearly no way in which they can be “assembled” into 4-vectors. However,

we may note that in four dimensional a two-index antisymmetric tensor has (4× 3)/2 = 6

independent components. Since this is equal to 3 + 3, it suggests that perhaps we should

be grouping the electric and magnetic fields together into a single 2-index antisymmetric

tensor. This is in fact exactly what is needed. Thus we introduce a tensor Fµν , satisfying

Fµν = −Fνµ . (2.13)

It turns out that we should define its components in terms of ~E and ~B as follows:

F0i = −Ei , Fi0 = Ei , Fij = ǫijkBk . (2.14)

Here ǫijk is the usual totally-antisymmetric tensor of 3-dimensional vector calculus. It is

equal to +1 if (ijk) is an even permutation of (123), to = −1 if it is an odd permutation,

and to zero if it is no permutation (i.e. if two or more of the indices (ijk) are equal). In

other words, we have

F23 = B1 , F31 = B2 , F12 = B3 ,

F32 = −B1 , F13 = −B2 , F21 = −B3 . (2.15)

Viewing Fµν as a matrix with rows labelled by µ and columns labelled by ν, we shall have

Fµν =




F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33




=




0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0



. (2.16)

We also need to combine the charge density ρ and the 3-vector current density ~J into

a four-dimensional quantity. This is easy; we just define a 4-vector Jµ, whose spatial

components J i are just the usual 3-vector current components, and whose time component

J0 is equal to the charge density ρ:

J0 = ρ , J i = J i . (2.17)

A word of caution is in order here. Although we have defined objects Fµν and Jµ that

have the appearance of a 4-tensor and a 4-vector, we are only entitled to call them such if
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we have verified that they transform in the proper way under Lorentz transformations. In

fact they do, and we shall justify this a little later.

For now, we shall proceed to see how the Maxwell equations look when expressed in

terms of Fµν and Jµ. The answer is that they become

∂µF
µν = −4πJν , (2.18)

∂µFνρ + ∂νFρµ + ∂ρFµν = 0 . (2.19)

Two very nice things have happened. First of all, the original four Maxwell equations

(2.3) and (2.4) have become just two four-dimensional equations; (2.18) is the field equa-

tion, and (2.19) is the Bianchi identity. Secondly, the equations are manifestly Lorentz

covariant; i.e. they transform tensorially under Lorentz transformations. This means that

they keep exactly the same form in all Lorentz frames. If we start with (2.18) and (2.19)

in the unprimed frame S, then we know that in the frame S′, related to S by the Lorentz

transformation (1.73), the equations will look identical, except that they will now have

primes on all the quantities.

We should first verify that indeed (2.18) and (2.19) are equivalent to the Maxwell equa-

tions (2.3) and (2.4). Consider first (2.18). This equation is vector-valued, since it has the

free index ν. Therefore, to reduce it down to three-dimensional equations, we have two

cases to consider, namely ν = 0 or ν = j. For ν = 0 we have

∂iF
i0 = −4πJ0 , (2.20)

which therefore corresponds (see (2.14) and (2.17)) to

−∂iEi = −4πρ , i.e. ~∇ · ~E = 4πρ . (2.21)

For ν = j, we shall have

∂0F
0j + ∂iF

ij = −4πJ j , (2.22)

which gives

∂0Ej + ǫijk∂iBk = −4πJ j . (2.23)

This is just10

−∂
~E

∂t
+ ~∇× ~B = 4π ~J . (2.24)

Thus (2.18) is equivalent to the two Maxwell field equations in (2.3).

10Recall that the i’th component of ~∇× ~V is given by (~∇× ~V )i = ǫijk∂jVk for any 3-vector ~V .
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Turning now to (2.19), it follows from the antisymmetry (2.13) of Fµν that the left-hand

side is totally antisymmetric in (µνρ) (i.e. it changes sign under any exchange of a pair of

indices). Thefore there are two distinct inequivalent assignments of indices, after we make

the 1 + 3 decomposition µ = (0, i) etc.: Either one of the indices is a 0 with the other two

Latin, or else all three are Latin. Consider first (µ, ν, ρ) = (0, i, j):

∂0Fij + ∂iFj0 + ∂jF0i = 0 , (2.25)

which, from (2.14), means

ǫijk
∂Bk
∂t

+ ∂iEj − ∂jEi = 0 . (2.26)

Since this is antisymmetric in ij there is no loss of generality involved in contracting with

ǫijℓ, which gives11

2
∂Bℓ
∂t

+ 2ǫijℓ ∂iEj = 0 . (2.27)

This is just the statement that

~∇× ~E +
∂ ~B

∂t
= 0 , (2.28)

which is the second of the Maxwell equations in (2.4).

The other distinct possibility for assigning decomposed indices in (2.19) is to take

(µ, ν, ρ) = (i, j, k), giving

∂iFjk + ∂jFki + ∂kFij = 0 . (2.29)

Since this is totally antisymmetric in (i, j, k), no generality is lost by contracting it with

ǫijk, giving

3ǫijk ∂iFjk = 0 . (2.30)

From (2.14), this implies

3ǫijkǫjkℓ∂iBℓ = 0 , and hence 6∂iBi = 0 . (2.31)

This has just reproduced the first Maxwell equation in (2.4), i.e. ~∇ · ~B = 0.

We have now demonstrated that the equations (2.18) and (2.19) are equivalent to the four

Maxwell equations (2.3) and (2.4). Since (2.18) and (2.19) are written in a four-dimensional

notation, it is highly suggestive that they are indeed Lorentz covariant. However, we should

be a little more careful, in order to be sure about this point. Not every set of objects V µ

can be viewed as a Lorentz 4-vector, after all. The test is whether they transform properly,

as in (1.88), under Lorentz transformations.

11Recall that ǫijmǫkℓm = δikδjℓ − δiℓδjk, and hence ǫijmǫkjm = 2δik.
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We may begin by considering the quantities Jµ = (ρ, J i). Note first that by applying

∂ν to the Maxwell field equation (2.18), we get identically zero on the left-hand side, since

partial derivatives commute and Fµν is antisymmetric. Thus from the right-hand side we

get

∂µJ
µ = 0 . (2.32)

This is the equation of charge conservation. Decomposed into the 3 + 1 language, it takes

the familiar form
∂ρ

∂t
+ ~∇ · ~J = 0 . (2.33)

By integrating over a closed 3-volume V and using the divergence theorem on the second

term, we learn that the rate of change of charge inside V is balanced by the flow of charge

through its boundary S:
∂

∂t

∫

V
ρdV = −

∫

S

~J · d~S . (2.34)

Now we are in a position to show that Jµ = (ρ, ~J) is indeed a 4-vector. Considering

J0 = ρ first, we may note that

dQ ≡ ρdxdydz (2.35)

is clearly Lorentz invariant, since it is an electric charge. Clearly, for example, all Lorentz

observers will agree on the number of electrons in a given closed spatial region, and so they

will agree on the amount of charge. Another quantity that is Lorentz invariant is

dv = dtdxdydz , (2.36)

the volume of an infinitesimal region in spacetime. This can be seen from the fact that the

Jacobian J of the transformation from dv to dv′ = dt′dx′dy′dz′ is given by

J = det
(∂x′µ

∂xν

)
= det(Λµν) . (2.37)

Now the defining property (1.79) of the Lorentz transformation can be written in a matrix

notation as

ΛT ηΛ = η , (2.38)

and hence taking the determinant, we get (det Λ)2 = 1 and hence

det Λ = ±1 . (2.39)

Assuming that we restrict attention to Lorentz transformations without reflections, then

they will be connected to the identity (we can take the boost velocity ~v to zero and/or
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the rotation angle to zero and continuously approach the identity transformation), and so

det Λ = 1. Thus it follows from (2.37) that for Lorentz transformations without reflections,

the 4-volume element dtdxdydz is Lorentz invariant.

Comparing dQ = ρdxdydz and dv = dtdxdydz, both of which we have argued are

Lorentz invariant, we can conclude that ρ must transform in the same way as dt under

Lorentz transformations. In other words, ρ must transform like the 0 component of a

4-vector. Thus writing, as we did, that J0 = ρ, is justified.

In the same way, we may consider the spatial components J i of the putative 4-vector

Jµ. Considering J1, for example, we know that J1dydz is the current flowing through the

area element dydz. Therefore in time dt, there will have been a flow of charge J1dtdydz.

Being a charge, this must be Lorentz invariant, and so it follows from the known Lorentz

invariance of dv = dtdxdydz that J1 must transform the same way as dx under Lorentz

transformations. Thus J1 does indeed transform like the 1 component of a 4-vector. Similar

arguments apply to J2 and J3. (It is important in this argument that, because of the

charge-conservation equation (2.32) or (2.34), the flow of charges we are discussing when

considering the J i components are the same charges we discussed when considering the J0

component.)

We have now established that Jµ = (ρ, J i) is indeed a Lorentz 4-vector, where ρ is the

charge density and J i the 3-vector current density.

At this point, we recall that by choosing the Lorenz gauge (2.11), we were able to reduce

the Maxwell field equations (2.3) to (2.12). Furthermore, we can write these equations

together as

Aµ = −4π Jµ , (2.40)

where

Aµ = (φ, ~A) , (2.41)

where the d’Alembertian, or wave operator, = ∂µ∂µ = ∂i∂i−∂20 was introduced in (1.108).

We saw that it is manifestly a Lorentz scalar operator, since it is built from the contraction

of indices on the two Lorentz-vector gradient operators. Since we have already established

that Jµ is a 4-vector, it therefore follows that Aµ is a 4-vector. Note, en passant, that the

Lorenz gauge condition (2.11) that we imposed earlier translates, in the four-dimensional

language, into

∂µA
µ = 0 , (2.42)

which is nicely Lorentz invariant.
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The final step is to note that our definition (2.14) is precisely consistent with (2.41) and

(2.8), if we write

Fµν = ∂µAν − ∂νAµ . (2.43)

First, we note from (2.41) that because of the η00 = −1 needed when lowering the 0 index,

we shall have

Aµ = (−φ, ~A) . (2.44)

Therefore we find

F0i = ∂0Ai − ∂iA0 =
∂Ai
∂t

+ ∂iφ = −Ei ,

Fij = ∂iAj − ∂jAi = ǫijk(~∇× ~A)k = ǫijkBk . (2.45)

In summary, we have shown that Jµ is a 4-vector, and hence, using (2.40), that Aµ is a

4-vector. Then, it is manifest from (2.43) that Fµν is a 4-tensor. Hence, we have established

that the Maxwell equations, written in the form (2.18) and (2.19), are indeed expressed in

terms of 4-tensors and 4-vectors, and so the manifest Lorentz covariance of the Maxwell

equations is established.

Finally, it is worth remarking that in the 4-tensor description, the way in which the gauge

invariance arises is very straightforward. First, it is manifest that the Bianchi identity (2.19)

is solved identically by writing

Fµν = ∂µAν − ∂νAµ , (2.46)

for some 4-vector Aµ. This is because (2.19) is totally antisymmetric in µνρ, and so, when

(2.46) is substituted into it, one gets identically zero since partial derivatives commute.

(Try making the substitution and verify this explicitly. The vanishing because of the com-

mutativity of partial derivatives is essentially the same as the reason why curl grad ≡ 0

and div curl ≡ 0.) It is also clear from (2.46) that Fµν will be unchanged if we make the

replacement

Aµ −→ Aµ + ∂µλ , (2.47)

where λ is an arbitrary function of position and time. Again, the reason is that partial

derivatives commute. Comparing (2.47) with (2.44), we see that (2.47) implies

φ −→ φ− ∂λ

∂t
, Ai −→ Ai + ∂iλ , (2.48)

and so we have reproduced the gauge transformations (2.9) and (2.10).

It should have become clear by now that all the familiar features of the Maxwell equa-

tions are equivalently described in the spacetime formulation in terms of 4-vectors and
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4-tensors. The only difference is that everything is described much more simply and ele-

gantly in the four-dimensional language.

2.4 Lorentz transformation of ~E and ~B

Although for many purposes the four-dimensional decsription of the Maxwell equations is

the most convenient, it is sometimes useful to revert to the original description in terms of

~E and ~B. For example, we may easily derive the Lorentz transformation properties of ~E

and ~B, making use of the four-dimensional formulation. In terms of Fµν , there is no work

needed to write down its behaviour under Lorentz transformations. Raising the indices for

convenience, we shall have

F ′µν = ΛµρΛ
ν
σ F

ρσ . (2.49)

From this, and the fact (see (2.14) that F 0i = Ei, F
ij = ǫijkBk, we can then immediately

read of the Lorentz transformations for ~E and ~B.

From the expressions (1.74) for the most general Lorentz boost transformation, we may

first calculate ~E ′, calculated from

E′
i = F ′0i = Λ0

ρΛ
i
σ F

ρσ ,

= Λ0
0Λ

i
k F

0k + Λ0
k Λ

i
0 F

k0 + Λ0
k Λ

i
ℓ F

kℓ ,

= γ
(
δik +

γ − 1

v2
vivk

)
Ek − γ2vivkEk − γ vk

(
δiℓ +

γ − 1

v2
vivℓ

)
ǫkℓmBm ,

= γEi + γǫijk vjBk −
γ − 1

v2
vivkEk . (2.50)

(Note that because Fµν is antisymmetric, there is no F 00 term on the right-hand side on

the second line.) Thus, in terms of 3-vector notation, the Lorentz boost transformation of

the electric field is given by

~E′ = γ( ~E + ~v × ~B)− γ − 1

v2
(~v · ~E)~v . (2.51)

An analogous calculation shows that the Lorentz boost transformation of the magnetic field

is given by

~B′ = γ( ~B − ~v × ~E)− γ − 1

v2
(~v · ~B)~v . (2.52)

Suppose, for example, that in the frame S there is just a magnetic field ~B, while ~E = 0.

An observer in a frame S′ moving with uniform velocity ~v relative to S will therefore observe

not only a magnetic field, given by

~B′ = γ ~B − γ − 1

v2
(~v · ~B)~v , (2.53)
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but also an electric field, given by

~E′ = γ~v × ~B . (2.54)

This, of course, is the principle of the dynamo.12

It is instructive to write out the Lorentz transformations explicitly in the case when the

boost is along the x direction, ~v = (v, 0, 0). Equations (2.51) and (2.52) become

E′
x = Ex , E′

y = γ(Ey − vBz) , E′
z = γ(Ez + vBy) ,

B′
x = Bx , B′

y = γ(By + vEz) , B′
z = γ(Bz − vEy) . (2.55)

2.5 The Lorentz force

Consider a point particle following the path, or worldline, xi = xi(t). It has 3-velocity

ui = dxi/dt, and, as we saw earlier, 4-velocity

Uµ = (γ, γ ~u) , where γ =
1√

1− u2
. (2.56)

Multiplying by the rest mass m of the particle gives another 4-vector, namely the 4-

momentum

pµ = mUµ = (mγ,mγ ~u) . (2.57)

The quantity p0 = mγ is called the relativistic energy E, and pi = mγ ui is called the

relativistic 3-momentum. Note that since UµUµ = −1, we shall have

pµpµ = −m2 . (2.58)

We now define the relativistic 4-force fµ acting on the particle to be

fµ =
dpµ

dτ
, (2.59)

where τ is the proper time. Clearly fµ is indeed a 4-vector, since it is the 4-vector dpµ

divided by the scalar dτ .

Using (2.57), we can write the 4-force as

fµ =
(
mγ3~u · d~u

dτ
,mγ3~u · d~u

dτ
~u+mγ

d~u

dτ

)
. (2.60)

It follows that if we move to the instantaneous rest frame of the particle, i.e. the frame in

which ~u = 0 at the particular moment we are considering, then fµ reduces to

fµ
∣∣∣
rest frame

= (0, ~F ) , (2.61)

12In a practical dynamo the rotor is moving with a velocity ~v which is much less than the speed of light,

i.e. |~v| << 1 in natural units. This means that the gamma factor γ = (1 − v2)−1/2 is approximately equal

to unity in such cases.
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where

~F = m
d~u

dt
(2.62)

is the Newtonian force measured in the rest frame of the particle.13 Thus, we should

interpret the 4-force physically as describing the Newtonian 3-force when measured in the

instantaneous rest frame of the accelerating particle.

If we now suppose that the particle has electric charge e, and that it is moving under

the influence of an electromagnetic field Fµν , then its motion is given by the Lorentz force

equation

fµ = eFµν Uν . (2.63)

One can more or less justify this equation on the grounds of “what else could it be?”, since

we know that there must exist a relativistic equation (i.e. a Lorentz covariant equation)

that describes the motion. In fact it is easy to see that (2.63) is correct. We calculate the

spatial components:

f i = eF iν Uν = eF i0 U0 + eF ij Uj ,

= e(−Ei)(−γ) + eǫijkBkγ uj , (2.64)

and thus

~f = eγ ( ~E + ~u× ~B) . (2.65)

But fµ = dpµ/dτ , and so ~f = d~p/dτ = γ d~p/dt (recall from section 1.6 that dτ = dt/γ) and

so we have
d~p

dt
= e ( ~E + ~u× ~B) , (2.66)

where d~p/dt is the rate of change of relativistic 3-momentum. This is indeed the standard

expression for the motion of a charged particle under the Lorentz force.

2.6 Action principle for charged particles

In this section, we shall show how the equations of motion for a charged particle moving

in an electromagnetic field can be derived from an action principle. To begin, we shall

consider an uncharged particle of mass m, with no forces acting on it. It will, of course,

move in a straight line. It turns out that its equation of motion can be derived from the

Lorentz-invariant action

S = −m
∫ τ2

τ1
dτ , (2.67)

13Note that we can replace the proper time τ by the coordinate time t in the instantaneous rest frame,

since the two are the same.
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where τ is the proper time along the trajectory xµ(τ) of the particle, starting at proper

time τ = τ1 and ending at τ = τ2. The action principle then states that if we consider all

possible paths between the initial and final spacetime points on the path, then the actual

path followed by the particle will be such that the action S is stationary. In other words, if

we consider small variations of the path around the actual path, then to first order in the

variations we shall have δS = 0.

To see how this works, we note that dτ2 = dt2 − dxidxi = dt2(1 − vivi) = dt2(1 − v2),

where vi = dxi/dt is the 3-velocity of the particle. Thus dτ = dt/γ where γ = (1− v2)−1/2

and so

S = −m
∫ t2

t1

dt

γ
= −m

∫ t2

t1
(1− v2)1/2 dt = −m

∫ t2

t1
(1− ẋiẋi)1/2 dt . (2.68)

In other words, the Lagrangian L, for which S =
∫ t2
t1
Ldt, is given by

L = −m
γ

= −m(1− ẋiẋi)1/2 . (2.69)

As a check, if we expand (2.69) for small velocities (i.e. small compared with the speed

of light, so |ẋi| << 1), we shall have

L = −m+ 1
2mv

2 + · · · . (2.70)

Since the Lagrangian is given by L = T − V we see that T is just the usual kinetic energy

1
2mv

2 for a non-relativistic particle of mass m, while the potential energy is just m. Of

course if we were not using units where the speed of light were unity, this energy would be

mc2. Since it is just a constant, it does not affect the equations of motion that will follow

from the action principle.

Now let us consider small variations δxi(t) around the path xi(t) followed by the particle.

The action will vary according to

δS = m

∫ t2

t1
(1− ẋjẋj)−1/2 ẋiδẋidt . (2.71)

Integrating by parts then gives

δS = −m
∫ t2

t1

d

dt

(
(1− ẋjẋj)−1/2 ẋi

)
δxidt+m

[
(1− ẋjẋj)−1/2 ẋiδxi

]t2
t1
. (2.72)

As usual in an action principle, we restrict to variations of the path that vanish at the

endpoints, so δxi(t1) = δxi(t2) = 0 and the boundary term can be dropped. The variation

δxi is allowed to be otherwise arbitrary in the time interval t1 < t < t2, and so we conclude

from the requirement of stationary action δS = 0 that

d

dt

(
m(1− ẋj ẋj)−1/2 ẋi

)
= 0 . (2.73)
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Now, recalling that we define γ = (1− v2)−1/2, we see that

d(mγ~v)

dt
= 0 , (2.74)

or, in other words,
d~p

dt
= 0 , (2.75)

where ~p = mγ~v is the relativistic 3-momentum. We have, of course, derived the equation

for straight-line motion in the absence of any forces acting.

Now we extend the discussion to the case of a particle of mass m and charge e, moving

under the influence of an electromagnetic field Fµν . This field will be written in terms of a

4-vector potential:

Fµν = ∂µAν − ∂νAµ . (2.76)

The action will now be the sum of the free-particle action (2.68) above plus a term describing

the interaction of the particle with the electromagnetic field. The total action turns out to

be

S =

∫ τ2

τ1
(−mdτ + eAµdx

µ) . (2.77)

Note that it is again Lorentz invariant.

From (2.44) we have Aµ = (−φ, ~A), and so

Aµdx
µ = Aµ

dxµ

dt
dt = (A0 +Aiẋ

i)dt = (−φ+Aiẋ
i)dt . (2.78)

Thus we have S =
∫ t2
t1
Ldt with the Lagrangian L given by

L = −m(1− ẋjẋj)1/2 − eφ+ eAiẋ
i , (2.79)

where potentials φ and Ai depend on t and x. The first-order variation of the action under

a variation δxi in the path gives

δS =

∫ t2

t1

[
m(1− ẋj ẋj)−1/2 ẋiδẋi − e∂iφ δx

i + eAiδẋ
i + e∂jAiẋ

iδxj
]
dt ,

=

∫ t2

t1

[
− d

dt
(mγẋi)− e∂iφ− e

dAi
dt

+ e∂iAj ẋ
j
]
δxidt . (2.80)

(We have dropped the boundary terms immediately, since δxi is again assumed to vanish

at the endpoints.) Thus the principle of stationary action δS = 0 implies

d(mγẋi)

dt
= −e∂iφ− dAi

dt
+ e∂iAj ẋ

j . (2.81)

Now, the total time derivative dAi/dt has two contributions, and we may write it as

dAi
dt

=
∂Ai
∂t

+ ∂jAi
dxj

dt
=
∂Ai
∂t

+ ∂jAi ẋ
j . (2.82)
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This arises because first of all, Ai can depend explicitly on the time coordinate; this con-

tribution is ∂Ai/∂t. Additionally, Ai depends on the spatial coordinates xi, and along the

path followed by the particle, xi depends on t because the path is xi = xi(t). This accounts

for the second term.

Putting all this together, we have

d(mγẋi)

dt
= e

(
− ∂iφ− ∂Ai

∂t

)
+ e(∂iAj − ∂jAi) ẋ

j ,

= e(Ei + ǫijk ẋ
jBk) . (2.83)

In other words, we have
d~p

dt
= e( ~E + ~v × ~B) , (2.84)

which is the Lorentz force equation (2.66).

It is worth noting that although we gave a “three-dimensional” derivation of the equa-

tions of motion following from the action (2.77), we can also instead directly derive the four-

dimensional equation dpµ/dτ = eFµνUν . To begin, we note that since dτ2 = −ηµνdxµdxν ,
its variation variation under a variation of the path xµ(τ) gives 2dτ δ(dτ) = −2ηµνd(δx

µ) dxν ,

and so dividing by 2dτ gives

δ(dτ) = −ηµν
dxν

dτ
δ(dxµ) ,

= −Uµ d(δxµ) , (2.85)

where Uµ is the 4-velocity. Thus the variation of the action (2.77) gives

δS =

∫ τ2

τ1
(mUµdδx

µ + eAµ dδx
µ + e∂νAµ δx

νdxµ) ,

=

∫ τ2

τ1
(−mdUµ δxµ − edAµ δx

µ + e∂µAν δx
µdxν) ,

=

∫ τ2

τ1
(−mdUµ

dτ
− e

dAµ
dτ

+ e∂µAν
dxν

dτ
)δxµdτ , (2.86)

where we have dropped the boundary terms
∫ τ2
τ1
d(mUµ δx

µ + eAµ δx
µ) in getting to the

second line, since they integrate to give [mUµ δx
µ + eAµ δx

µ]τ2τ1 and therefore vanish, as we

assume δxµ = 0 at the initial and final proper times τ1 and τ2. Now requiring that δS = 0

for all such variations δxµ, we deduce from (2.86) that

dAµ
dτ

= ∂νAµ
dxν

dτ
= ∂νAµ U

ν , (2.87)

and so

δS =

∫ τ2

τ1

(
−m

dUµ
dτ

− e∂νAµ U
ν + e∂µAν U

ν
)
δxµdτ . (2.88)
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Requiring δS = 0 for all variations (that vanish at the endpoints) we therefore obtain the

equation of motion

m
dUµ
dτ

= e(∂µAν − ∂νAµ)U
ν ,

= eFµν U
ν . (2.89)

Thus we have reproduced the Lorentz force equation in its four-dimensionally covariant

form
dpµ

dτ
= eFµν Uν , (2.90)

where pµ = mUµ is the 4-momentum.

2.7 Gauge invariance of the action

In writing down the relativistic action (2.77) for a charged particle we had to make use

of the 4-vector potential Aµ. This is itself not physically observable, since, as we noted

earlier, Aµ and A′
µ = Aµ + ∂λ describe the same physics, where λ is any arbitrary function

in spacetime, since Aµ and A′
µ give rise to the same electromagnetic field Fµν . One might

worry, therefore, that the action itself would be gauge dependent, and therefore might not

properly describe the required physical situation. However, all is in fact well. This already

can be seen from the fact that, as we demonstrated, the variational principle for the action

(2.77) does in fact produce the correct gauge-invariant Lorentz force equation (2.66).

It is instructive also to examine the effects of a gauge transformation directly at the

level of the action. If we make the gauge transformation Aµ → A′
µ = Aµ+∂µλ, we see from

(2.77) that the action S transforms to S′ given by

S′ =

∫ τ2

τ1
(−mdτ + eAµdx

µ + e∂µλdx
µ) ,

= S + e

∫ τ2

τ1
∂µλdx

µ = e

∫ τ2

τ1
dλ , (2.91)

and so

S′ = S + e[λ(τ2)− λ(τ1)] . (2.92)

The simplest situation to consider is where we restrict ourselves to gauge transformations

that vanish at the endpoints, in which case the action will be gauge invariant, S′ = S. Even

if λ is non-vanishing at the endpoints, we see from (2.92) that S and S′ merely differ by a

constant that depends solely on the values of λ at τ1 and τ2. Clearly, the addition of this

constant has no effect on the equations of motion that one derives from S′.
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2.8 Canonical momentum, and Hamiltonian

Given any Lagrangian L(xi, ẋi, t) one defines the canonical momentum πi as

πi =
∂L

∂ẋi
. (2.93)

The relativistic Lagrangian for the charged particle is given by (2.79), and so we have

πi = m(1− ẋj ẋj)−1/2 ẋi + eAi , (2.94)

or, in other words,

πi = mγ ẋi + eAi , (2.95)

= pi + eAi , (2.96)

where pi as usual is the standard mechanical relativistic 3-momentum of the particle.

As usual, the Hamiltonian for the system is given by

H = πi ẋ
i − L , (2.97)

and so we find

H = mγẋiẋi +
m

γ
+ eφ . (2.98)

Now, ẋi = vi and mγv
2 +m/γ = mγ(v2 + (1− v2)) = mγ, so we have

H = mγ + eφ . (2.99)

The Hamiltonian is to be viewed as a function of the coordinates xi and the canonical

momenta πi. To express γ in terms of πi, we note from (2.95) that mγẋi = πi− eAi, and so

squaring, we get m2γ2v2 = m2v2/(1−v2) = (πi−eAi)2. Solving for v2, and hence for γ, we

find that m2γ2 = (πi− eAi)2+m2, and so finally, from (2.99), we arrive at the Hamiltonian

H =
√
(πi − eAi)2 +m2 + eφ . (2.100)

Note that Hamilton’s equations, which will necessarily give rise to the same Lorentz

force equations of motion we encountered previously, are given by

∂H

∂πi
= ẋi ,

∂H

∂xi
= −π̇i . (2.101)

As a check of the correctness of the Hamiltonian (2.100) we may examine it in the non-

relativistic limit when (πi− eAi)2 is much less than m2. We then extract an m2 factor from

inside the square root in
√
(πi − eAi)2 +m2 and expand to get

H = m
√
1 + (πi − eAi)2/m2 + eφ ,

= m+
1

2m
(πi − eAi)

2 + eφ+ · · · . (2.102)
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The first term is the rest-mass energy, which is just a constant, and the remaining terms

presented explicitly in (2.102) give the standard non-relativistic Hamiltonian for a charged

particle

Hnon-rel. =
1

2m
(πi − eAi)

2 + eφ . (2.103)

This should be familiar from quantum mechanics, when one writes down the Schrödinger

equation for the wave function for a charged particle in an electromagnetic field.

3 Particle Motion in Static Electromagnetic Fields

In this chapter, we discuss the motion of a charged particle in static (i.e. time-independent)

electromagnetic fields.

3.1 Description in terms of potentials

If we are describing static electric and magnetic fields, ~E = ~E(~r) and ~B = ~B(~r), it is natural

(and always possible) to describe them in terms of scalar and 3-vector potentials that are

also static, φ = φ(~r), ~A = ~A(~r). Thus we write

~E = −~∇φ− ∂ ~A

∂t
= −~∇φ(~r) ,

~B = ~∇× ~A(~r) . (3.1)

We can still perform gauge transformations, as given in (2.9) and (2.10). The most general

gauge transformation that preserves the time-independence of the potentials is therefore

given by taking the parameter λ to be of the form

λ(~r, t) = λ(~r) + k t , (3.2)

where k is an arbitrary constant. This implies that φ and ~A will transform according to

φ −→ φ− k , ~A −→ ~A+ ~∇λ(~r) . (3.3)

Note, in particular, that the electrostatic potential φ can just be shifted by an arbitrary

constant. This is the familiar freedom that one typically uses to set φ = 0 at infinity.

Recall that the Hamiltonian for a particle of mass m and charge e in an electromagnetic

field is given by (2.99)

H = mγ + eφ , (3.4)
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where γ = (1−v2)−1/2. In the present situation with static fields, the Hamiltonian does not

depend explicitly on time, i.e. ∂H/∂t = 0. It then follows that the Hamiltonian is conserved

(i.e. it is the same at all times) since we have (by the chain rule)

dH

dt
=

∂H

∂t
+
∂H

∂xi
ẋi +

∂H

∂πi
π̇i ,

= 0− π̇i ẋ
i + ẋi π̇i = 0 . (3.5)

(We used the Hamilton equations (2.101) in getting to the second line.) This time-independent

quantity H is then just the energy E of the system:

E ≡ H = mγ + eφ . (3.6)

We may think of the first term in E as being the mechanical term,

Emech = mγ , (3.7)

since this is just the total energy of a particle of rest mass m moving with velocity ~v. The

second term, eφ, is the contribution to the total energy from the electric field. Note that the

magnetic field, described by the 3-vector potential ~A, does not contribute to the conserved

energy. This is because the magnetic field ~B does no work on the charge:

Recall that the Lorentz force equation can be written as

d(mγvi)

dt
= e(Ei + ǫijk v

jBk) . (3.8)

Multiplying by vi we therefore have

mγvi
dvi

dt
+mvivi

dγ

dt
= eviEi . (3.9)

Now γ = (1− v2)−1/2, so

dγ

dt
= (1− v2)−3/2vi

dvi

dt
= γ3vi

dvi

dt
, (3.10)

and so (3.9) gives

m
dγ

dt
= eviEi . (3.11)

Since Emech = mγ, and m is a constant, we therefore have

dEmech

dt
= e~v · ~E . (3.12)

Thus, the mechanical energy of the particle is changed only by the electric field, and not

by the magnetic field.
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Note that another (and equivalent) derivation of the constancy of E = mγ + eφ is as

follows:

dE
dt

=
d(mγ)

dt
+ e

dφ

dt

=
dEmech

dt
+ e∂iφ

dxi

dt
,

= e~v · ~E − e~v · ~E = 0 . (3.13)

3.2 Particle motion in static uniform ~E and ~B fields

Let us consider the case where a charged particle is moving in static (i.e. time-independent)

uniform ~E and ~B fields. In other words, ~E and ~B are constant vectors, independent of

time and of position. In this situation, it is easy to write down explicit expressions for the

corresponding scalar and 3-vector potentials. For the scalar potential, we can take

φ = − ~E · ~r = −Eixi . (3.14)

Clearly this gives the correct electric field, since

−∂iφ = ∂i(Ejx
j) = Ej∂ix

j = Ejδij = Ei . (3.15)

(It is, of course, essential that Ej is constant for this calculation to be valid.)

Turning now to the uniform ~B field, it is easily seen that this can be written as ~B =

~∇× ~A, with the 3-vector potential given by

~A = 1
2
~B × ~r . (3.16)

It is easiest to check this using index notation. We have

(~∇× ~A)i = ǫijk ∂jAk = ǫijk∂j(
1
2ǫkℓmBℓx

m) ,

= 1
2ǫijkǫℓmk Bℓ∂jx

m = 1
2ǫijkǫℓjkBℓ ,

= δiℓBℓ = Bi . (3.17)

Of course the potentials we have written above are not unique, since we can still perform

gauge transformations. If we restrict attention to transformations that maintain the time-

independence of φ and ~A, then for φ the only remaining freedom is to add an arbitrary

constant to φ. For the 3-vector potential, we can still add ~∇λ(~r) to ~A, where λ(~r) is an

arbitrary function of position. It is sometimes helpful, for calculational reasons, to do this.
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Suppose, for example, that the uniform ~B field lies along the z axis: ~B = (0, 0, B). From

(3.16), we may therefore write the 3-vector potential

~A = (−1
2By,

1
2Bx, 0) . (3.18)

Another choice is to take ~A′ = ~A+ ~∇λ(~r), with λ = −1
2Bxy. This gives

~A′ = (−By, 0, 0) . (3.19)

One easily verifies that indeed ~∇× ~A′ = (0, 0, B).

3.2.1 Motion in a static uniform electric field

From the Lorentz force equation, we shall have

d~p

dt
= e ~E , (3.20)

where ~p = mγ~v is the relativistic 3-momentum. Without loss of generality, we may take

the electric field to lie along the x axis, and so we will have

dpx
dt

= eE ,
dpy
dt

= 0 ,
dpz
dt

= 0 . (3.21)

Since there is a rotational symmetry in the (y, z) plane, we can, without loss of generality,

choose to take pz = 0, since the motion in the (yz) plane is evidently, from (3.21), simply

linear. Thus we may take the solution to (3.21) to be

px = eEt , py = p̄ , pz = 0 , (3.22)

where p̄ is a constant. We have also chosen the origin for the time coordinate t such that

px = 0 at t = 0.

Recalling that the 4-momentum is given by pµ = (mγ, ~p) = (Emech, ~p), and that pµpµ =

m2UµUµ = −m2, we see that

Emech =
√
m2 + p2x + p2y =

√
m2 + p̄2 + (eEt)2 , (3.23)

and hence we may write

Emech =
√
E2
0 + (eEt)2 , (3.24)

where E2
0 = m2 + p̄2 is the square of the mechanical energy at time t = 0.

We have ~p = mγ~v = Emech ~v, and so

dx

dt
=

px
Emech

=
eEt√

E2
0 + (eEt)2

, (3.25)
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which can be integrated to give

x =
1

eE

√
E2
0 + (eEt)2 . (3.26)

(The constant of integration has been absorbed into a choice of origin for the x coordinate.)

Note from (3.25) that the x-component of the 3-velocity asymptotically approaches 1 as t

goes to infinity. Thus the particle is accelerated closer and closer to the speed of light, but

never reaches it.

We also have
dy

dt
=

py
Emech

=
p̄√

E2
0 + (eEt)2

. (3.27)

This can be integrated by changing variable from t to u, defined by

eEt = E0 sinhu . (3.28)

This gives y = p̄ u/(eE), and hence

y =
p̄

eE
arcsinh

(eEt
E0
)
. (3.29)

(Again, the constant of integration has been absorbed into the choice of origin for y.)

The solutions (3.26) and (3.29) for x and y as functions of t can be combined to give x

as a function of y, leading to

x =
E0
eE

cosh
(eEy
p̄

)
. (3.30)

This is a catenary.

In the non-relativistic limit when |v| << 1, we have p̄ ≈ mv̄ and then, expanding (3.30)

we find the standard “Newtonian” parabolic motion

x ≈ constant +
eE

2mv̄2
y2 . (3.31)

3.2.2 Motion in a static uniform magnetic field

From the Lorentz force equation we shall have

d~p

dt
= e~v × ~B . (3.32)

Recalling (3.11), we see that in the absence of an electric field we shall have γ = constant,

and hence d~p/dt = d(mγ~v)/dt = mγ d~v/dt, leading to

d~v

dt
=

e

mγ
~v × ~B =

e

E ~v ×
~B , (3.33)
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since E = mγ + eφ = mγ (a constant) here.

Without loss of generality we may choose the uniform ~B field to lie along the z axis:

~B = (0, 0, B). Defining

ω ≡ eB

E =
eB

mγ
, (3.34)

we then find
dvx
dt

= ω vy ,
dvy
dt

= −ω vx ,
dvz
dt

= 0 . (3.35)

From this, it follows that
d(vx + i vy)

dt
= −iω (vx + i vy) , (3.36)

and so the first two equations in (3.35) can be integrated to give

vx + i vy = v0 e
−i (ωt+α) , (3.37)

where v0 is a real constant, and α is a constant (real) phase. Thus after further integrations

we obtain

x = x0 + r0 sin(ωt+ α) , y = y0 + r0 cos(ωt+ α) , z = z0 + v̄zt , (3.38)

for constants r0, x0, y0, z0 and v̄z, with

r0 =
v0
ω

=
mγv0
eB

=
p̄

eB
, (3.39)

where p̄ is the relativistic 3-momentum in the (x, y) plane. The particle therefore follows a

helical path, of radius r0.

3.2.3 Motion in uniform ~E and ~B fields

Having considered the case of particle motion in a uniform ~E field, and in a uniform ~B

field, we may also consider the situation of motion in uniform ~E and ~B fields together. To

discuss this in detail is quite involved, and we shall not pursue it extensively here. Instead,

consider the situation where we take

~B = (0, 0, B) , ~E = (0, Ey, Ez) , (3.40)

(there is no loss of generality in choosing axes so that this is the case), and we make the

simplifying assumption that the motion is non-relativistic, i.e. |~v| << 1. The equations of

motion will therefore be

m
d~v

dt
= e( ~E + ~v × ~B) , (3.41)
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and so

mẍ = eBẏ , mÿ = eEy − eBẋ , mz̈ = eEz . (3.42)

We can immediately solve for z, finding

z =
e

2m
Ez t

2 + v̄t , (3.43)

where we have chosen the z origin so that z = 0 at t = 0. The x and y equations can be

combined into
d

dt
(ẋ+ i ẏ) + iω(ẋ+ i ẏ) =

i e

m
Ey , (3.44)

where ω = eB/m. Thus we find

ẋ+ i ẏ = ae−iωt +
e

mω
Ey = ae−iωt +

Ey
B
. (3.45)

Choosing the origin of time so that a is real, we have

ẋ = a cosωt+
Ey
B
, ẏ = −a sinωt . (3.46)

Taking the time averages, we see that

〈ẋ〉 = Ey
B
, 〈ẏ〉 = 0 . (3.47)

The averaged velocity along the x direction is called the drift velocity. Notice that it is

perpendicular to ~E and ~B. It can be written in general as

~vdrift =
~E × ~B

B2
. (3.48)

For our assumption that |~v| << 1 to be valid, we must have | ~E× ~B| << B2, i.e. |Ey| << |B|.
Integrating (3.46) once more, we find

x =
a

ω
sinωt+

Ey
B
t , y =

a

ω
(cos ωt− 1) , (3.49)

where the origins of x and y have been chosen so that x = y = 0 at t = 0. These equations

describe the projection of the particle’s motion onto the (x, y) plane. The curve is called a

trochoid. If |a| > Ey/B there will be loops in the motion, and in the special case a = −Ey/B
the curve becomes a cycloid, with cusps:

x =
Ey
ωB

(ωt− sinωt) , y =
Ey
ωB

(1− cosωt) . (3.50)
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4 Action Principle for Electrodynamics

In this section, we shall show how the Maxwell equations themselves can be derived from

an action principle. We shall also introduce the notion of the energy-momentum tensor for

the electromagnetic field. We begin with a discussion of Lorentz invariant quantities that

can be built from the Maxwell field strength tensor Fµν .

4.1 Invariants of the electromagnetic field

As we shall now show, it is possible to build two independent Lorentz invariants that are

quadratic in the electromagnetic field. One of these will turn out to be just what is needed

in order to construct an action for electrodynamics.

4.1.1 The first invariant

The first quadratic invariant is very simple; we may write

I1 ≡ Fµν F
µν . (4.1)

Obviously this is Lorentz invariant, since it is built from the product of two Lorentz tensors,

with all indices contracted. It is instructive to see what this looks like in terms of the electric

and magnetic fields. From the expressions given in (2.14), we see that

I1 = F0i F
0i + Fi0 F

i0 + Fij F
ij ,

= 2F0i F
0i + Fij F

ij = −2EiEi + ǫijkBk ǫijℓBℓ ,

= −2EiEi + 2BiBi , (4.2)

and so

I1 ≡ Fµν F
µν = 2( ~B2 − ~E2) . (4.3)

One could, of course, verify from the Lorentz transformations (2.51) and (2.52) for ~E

and ~B that indeed ( ~B2− ~E2) was invariant, i.e. I ′1 = I1 under Lorentz transformations. This

would be quite an involved computation. However, the great beauty of the 4-dimensional

language is that there is absolutely no work needed at all; one can see by inspection that

Fµν F
µν is Lorentz invariant.

4.1.2 The second invariant

The second quadratic invariant that we can write down is given by

I2 ≡ 1
2ǫ
µνρσ FµνFρσ . (4.4)
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First, we need to explain the tensor ǫµνρσ. This is the four-dimensional Minkowski spacetime

generalisation of the totally-antisymmetric tensor ǫijk of three-dimensional Cartesian tensor

analysis. The tensor ǫµνρσ is also totally antisymmetric in all its indices. That means that

it changes sign if any two indices are exchanged. For example,14

ǫµνρσ = −ǫνµρσ = −ǫµνσρ = −ǫσνρµ . (4.5)

Since all the non-vanishing components of ǫµνρσ are related by the antisymmetry, we need

only specify one non-vanishing component in order to define the tensor completely. We

shall define

ǫ0123 = −1 , or, equivalently ǫ0123 = +1 . (4.6)

Thus ǫµνρσ is −1, +1 or 0 according to whether (µνρσ) is an even permutation of (0123),

and odd permutation, or no permutation at all. We use this definition of ǫµνρσ in all frames.

This can be done because, like the Minkowski metric ηµν , the tensor ǫµνρσ is an invariant

tensor, as we shall now discuss.

Actually, to be more precise, ǫµνρσ is an invariant pseudo-tensor. This means that un-

der Lorentz transformations that are connected to the identity (pure boosts and/or pure

rotations), it is truly an invariant tensor. However, it reverses its sign under Lorentz trans-

formations that involve a reflection. To see this, let us calculate what the transformation

of ǫµνρσ would be if we assume it behaves as an ordinary Lorentz tensor:

ǫ′µνρσ ≡ ΛµαΛ
ν
βΛ

ρ
γΛ

σ
δ ǫ
αβγδ ,

= (det Λ) ǫµνρσ . (4.7)

The last equality can easily be seen by writing out all the terms. (It is easier to play around

with the analogous identity in 2 or 3 dimensions, to convince oneself of it in an example

with fewer terms to write down.) Now, we already saw in section 2.3 that detΛ = ±1,

with det Λ = +1 for pure boosts and/or rotations, and detΛ = −1 if there is a reflection as

well. (See the discussion leading up to equation (2.39).) Thus we see from (4.7) that ǫµνρσ

behaves like an invariant tensor, taking the same values in all Lorentz frames, provided

there is no reflection. (Lorentz transformations connected to the identity, i.e. where there

is no reflection, are sometimes called proper Lorentz transformations.) In practice, we shall

14Beware that in an odd dimension, such as 3, the process of “cycling” the indices on ǫijk (for example,

pushing one off the right-hand end and bringing it to the front) is an even permutation; ǫkij = ǫijk. By

contrast, in an even dimension, such as 4, the process of cycling is an odd permutation; ǫσµνρ = −ǫµνρσ.
This is an elementary point, but easily overlooked if one is familiar only with three dimensions!
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almost always be considering only proper Lorentz transformations, and so the distinction

between a tensor and a pseudo-tensor will not concern us.

Returning now to the second quadratic invariant, (4.4), we shall have

I2 = 1
2ǫ
µνρσ FµνFρσ = 1

2 × 4× ǫ0ijkF0i Fjk ,

= 2(−ǫijk)(−Ei)ǫjkℓBℓ ,

= 4EiBi = 4~E · ~B . (4.8)

Thus, to summarise, we have the two quadratic invariants

I1 = FµνF
µν = 2( ~B2 − ~E2) ,

I2 = 1
2ǫ
µνρσ FµνFρσ = 4~E · ~B . (4.9)

Since the two quantities I1 and I2 are (manifestly) Lorentz invariant, this means that,

even though it is not directly evident in the three-dimensional language without quite a lot

of work, the two quantities

~B2 − ~E2 , and ~E · ~B (4.10)

are Lorentz invariant; i.e. they take the same values in all Lorentz frames. This has a

number of consequences. For example

1. If ~E and ~B are perpendicular in one Lorentz frame, then they are perpendicular in

all Lorentz frames.

2. In particular, if there exists a Lorentz frame where the electromagnetic field is purely

electric ( ~B = 0), or purely magnetic ( ~E = 0), then ~E and ~B are perpendicular in any

other frame.

3. If | ~E| > | ~B| in one frame, then it is true in all frames. Conversely, if | ~E| < | ~B| in one

frame, then it is true in all frames.

4. By making an appropriate Lorentz transformation, we can, at a given point, make ~E

and ~B equal to any values we like, subject only to the conditions that we cannot alter

the values of ( ~B2 − ~E2) and ~E · ~B at that point.

4.2 Action for electrodynamics

We have already discussed the action principle for a charged particle moving in an electro-

magnetic field. In that discussion, the electromagnetic field was just a specified background,
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which, of course, would be a solution of the Maxwell equations. We can also derive the

Maxwell equations themselves from an action principle, as we shall now show.

We begin by introducing the notion of Lagrangian density. This is a quantity that is

integrated over a three-dimensional spatial volume (typically, all of 3-space) to give the

Lagrangian:

L =

∫
Ld3x . (4.11)

Then, the Lagrangian is integrated over a time interval t1 ≤ t ≤ t2 to give the action,

S =

∫ t2

t1
Ldt =

∫
Ld4x . (4.12)

Consider first the vacuum Maxwell equations without sources,

∂µF
µν = 0 , ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 . (4.13)

We immediately solve the second equation (the Bianchi identity) by writing Fµν in terms

of a potential:

Fµν = ∂µAν − ∂νAµ . (4.14)

Since the Maxwell field equations are linear in the fields, it is natural to expect that the

action should be quadratic. In fact, it turns out that the first invariant we considered above

provides the appropriate Lagrangian density. We take

L = − 1

16π
FµνF

µν , (4.15)

and so the action will be

S = − 1

16π

∫
FµνF

µνd4x . (4.16)

We can now derive the source-free Maxwell equations by requiring that this action be

stationary with respect to variations of the gauge field Aµ. It must be emphasised that we

treat Aµ as the fundamental field here.

The derivation goes as follows. We shall have

δS = − 1

16π

∫
(δFµνF

µν + FµνδF
µν)d4x = − 1

8π

∫
δFµνF

µν d4x ,

= − 1

8π

∫
Fµν (∂µδAν − ∂νδAµ)d

4x = − 1

4π

∫
Fµν ∂µδAνd

4x ,

= − 1

4π

∫
∂µ(F

µν δAν)d
4x+

1

4π

∫
(∂µF

µν) δAνd
4x ,

= − 1

4π

∫

Σ
Fµν δAνdΣµ +

1

4π

∫
(∂µF

µν) δAνd
4x ,

=
1

4π

∫
(∂µF

µν) δAνd
4x . (4.17)
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Note that in the final steps, we have used the 4-dimensional analogue of the divergence

theorem to turn the 4-volume integral of the divergence of a vector into a 3-volume integral

over the bounding surface Σ.15 The next step is to say that this integral vanishes, because

we restrict attention to variations δAµ that vanish on Σ. Finally, we argue that if δS is to

vanish for all possible variations δAµ (that vanish on Σ), it must be that

∂µF
µν = 0 . (4.18)

Thus we have derived the source-free Maxwell field equation. Of course the Bianchi identity

has already been taken care of by writing Fµν in terms of the 4-vector potential Aµ.

The action (4.16), whose variation gave the Maxwell field equation, is written in what

is called second-order formalism; that is, the action is expressed in terms of the 4-vector-

potential Aµ as the fundamental field, with Fµν just being a short-hand notation for ∂µAν−
∂νAµ. It is sometimes convenient to use instead the first-order formalism, in which one

treats Aµ and Fµν as independent fields. In this formalism, the equation of motion coming

from demanding that S be stationary under variations of Fµν will derive the equation

Fµν = ∂µAν − ∂νAµ. To do this, we need a different action as our starting point, namely

Sf.o. =
1

4π

∫
(14F

µνFµν − Fµν ∂µAν)d
4x . (4.19)

First, consider the variation of Fµν , now treated as an independent fundamental field. This

gives

δSf.o. =
1

4π

∫
(12FµνδF

µν − δFµν∂µAν)d
4x ,

=
1

4π

∫
[12FµνδF

µν − 1
2δF

µν(∂µAν − ∂νAµ)]d
4x , (4.20)

where, in getting to the second line, we have used the fact that Fµν is antisymmetric. The

reason for doing this is that when we vary Fµν we can take δFµν to be arbitary, but it must

15The four-dimensional divergence theorem says that for any 4-vector W µ, we have
∫
V
(∂µW

µ) d4x =
∫
Σ
W µdΣµ. In our case, the 4-volume V consists of the “sandwich” of all of 3-space between the two

surfaces t = t1 and t = t2. Plotting t upwards and the three spatial directions out sideways (of course, we

can’t visualise so many dimensions, but lower-dimensional analogues help), the 4-volume V is like the interior

of a (higher-dimensional) tin can, with a bottom plate and a top plate at t = t1 and t = t2 respectively. We

eventually think of sending the radius of the tin can to infinity. For large but finite radius, the t = constant

“slices” through the can are 2-spheres (generalising the circles in the case of a lower-dimensional can that

we can actually visualise). Thus the boundary Σ comprises the top and bottom caps of the can, and then

the cylinder around the side, which is pushed out to infinite radius in the limit. The boundary on the side

is thus the direct product of time (running upwards) and the sphere at spatial infinity.
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still be antisymmetric. Thus it is helpful to force an explicit antisymmetrisation on the

∂µAν that multiplies it, since the symmetric part automatically gives zero when contracted

onto the antisymmetric δFµν . Requiring δSf.o. = 0 for arbitrary δFµν then implies the

integrand must vanish. This gives, as promised, the equation of motion

Fµν = ∂µAν − ∂νAµ . (4.21)

Vraying Sf.o. in (4.19) instead with respect to Aµ, we get

δSf.o. = − 1

4π

∫
Fµν ∂µδAν d

4x ,

=
1

4π

∫
(∂µF

µν) δAν d
4x , (4.22)

and hence reuiring that the variation of Sf.o. with respect to Aµ vanish gives the Maxwell

field equation

∂µF
µν = 0 (4.23)

again. Note that in this calculation, we immediately dropped the boundary term coming

from the integration by parts, for the usual reason that we only allow variations that vanish

on the boundary.

In practice, we shall usually use the previous, second-order, formalism.

4.3 Inclusion of sources

In general, the Maxwell field equation reads

∂µF
µν = −4πJν . (4.24)

So far, we have seen that by varying the second-order action (4.16) with respect to Aµ, we

obtain

δS =
1

4π

∫
∂µF

µν δAν d
4x . (4.25)

To derive the Maxwell field equation with a source current Jµ, we can simply add a term

to the action, to give

S =

∫ (
− 1

16π
FµνF

µν + JµAµ
)
d4x . (4.26)

Treating Jµ as independent of Aµ, we therefore find

δS =

∫ ( 1

4π
∂µF

µν + Jν
)
δAν d

4x , (4.27)

and so requiring δS = 0 gives the Maxwell field equation (4.24) with the source on the

right-hand side.
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The form of the source current Jµ depends, of course, on the details of the situation

one is considering. One might simply have a situation where Jµ is an externally-supplied

source field. Alternatively, the source Jµ might itself be given dynamically in terms of some

charged matter fields, or in terms of a set of moving point charges. Let us consider this

possibility in more detail.

If there is a single point charge q at the location ~r0, then it will be described by the

charge density

ρ = q δ3(~r − ~r0) , (4.28)

where the three-dimensional delta-function δ3(~r), with ~r = (x, y, z), means

δ3(~r) = δ(x)δ(y)δ(z) . (4.29)

If the charge is moving, so that its location at time t is at ~r = ~r0(t), then of course we shall

have

ρ = q δ3(~r − ~r0(t)) . (4.30)

The 3-vector current will be given by

~J = q δ3(~r − ~r0(t))
d~r0
dt

, (4.31)

and so the 4-current is

Jµ = (ρ, ρ~v) , where ~v =
d~r0
dt

, (4.32)

and ρ is given by (4.30). We can verify that this is the correct current vector, by checking

that it properly satisfies the charge-conservation equation ∂µJ
µ = ∂ρ/∂t+ ∂iJ

i = 0. Thus

we have

∂ρ

∂t
= q

∂

∂t
δ3(~r − ~r0(t)) = q

∂

∂xi0
δ3(~r − ~r0(t))

dxi0
dt

,

= −q ∂

∂xi
δ3(~r − ~r0(t))

dxi0
dt

= −∂i
(
ρ
dxi0
dt

)
,

= −∂i(ρvi) = −∂iJi . (4.33)

Note that we used the chain rule for differentiation in the first line, and that in getting to

the second line we used the result that ∂/∂x f(x− y) = f ′(x− y) = −∂/∂y f(x− y) for any

function f with argument (x− y) (where f ′ denotes the derivative of f with respect to its

argument). It is also useful to note that we can write (4.32) as

Jµ = ρ
dxµ0
dt

, (4.34)

57



where we simply define xµ0 (t) with µ = 0 to be t.

Note that the integral
∫
JµAµ for the point charge gives a contribution to that action

that is precisely of the form we saw in equation (2.77):

∫
JµAµd

4x =

∫
qδ3(~r − ~r0)

dxµ0
dt

Aµd
3xdt ,

=

∫

path
q
dxµ0
dt

Aµ(x
ν
0) dt = q

∫

path
Aµdx

µ . (4.35)

Suppose now we have N charges qa, following paths ~ra(t). Then the total charge density

will be given by

ρ =
N∑

a=1

qa δ
3(~r − ~ra(t)) . (4.36)

Since we have alluded several times to the fact that ∂µJ
µ = 0 is the equation of charge

conservation, it is appropriate to examine this in a little more detail. The total charge Q

at time t1 is given by integrating the charge density over the spatial 3-volume:

Q(t1) =

∫

t=t1
ρ d3x =

∫

t=t1
J0dΣ0 , where dΣ0 = dxdydz . (4.37)

This can be written covariantly as

Q(t1) =

∫

t=t1
JµdΣµ , (4.38)

where we define also

dΣ1 = −dtdydz , dΣ2 = −dtdzdx , dΣ3 = −dtdydz . (4.39)

Because the integral in (4.37) is defined to be over the 3-surface at constant t, it follows

that the extra terms, for µ = 1, 2, 3, in (4.38) do not contribute.

If we now calculate the charge at a later time t2, and then take the difference between

the two charges, we will obtain

Q(t2)−Q(t1) =

∫

Σ
JµdΣµ , (4.40)

where Σ is the cylindrical closed spatial 3-volume bounded by the “end caps” formed by the

surfaces t = t1 and t = t2, and by the sides at spatial infinity. We are assuming the charges

are confined to a finite region, and so the current Jµ is zero on the sides of the cylinder.

By the 4-dimensional analogue of the divergence theorem we shall have

∫

Σ
JµdΣµ =

∫

V
∂µJ

µ d4x , (4.41)
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where V is the 4-volume bounded by Σ. Thus we have

Q(t2)−Q(t1) =

∫

V
∂µJ

µd4x = 0 , (4.42)

since ∂µJ
µ = 0. Thus we see that ∂µJ

µ = 0 implies that the total charge in an isolated

finite region is independent of time.

Note that the equation of charge conservation implies the gauge invariance of the action.

We have

S =

∫ (
− 1

16π
FµνF

µν + JµAµ
)
d4x , (4.43)

and so under a gauge transformation Aµ → Aµ + ∂µλ, we find

S −→
∫ (

− 1

16π
FµνF

µν + JµAµ
)
d4x+

∫
Jµ∂µλd

4x ,

= S +

∫
Jµ∂µλd

4x = S +

∫
∂µ(λJ

µ) d4x−
∫
λ∂µJ

µd4x ,

= S +

∫

Σ
λJµ dΣµ . (4.44)

As usual, Σ here is the 3-cylinder of infinite radius in the spatial directions, with endcaps

at t = t1 and t = t2. The current Jµ will vanish on the sides of the cylinder, since they

are at spatial infinity and we take Jµ to vanish there. If we restrict attention to gauge

transformations that vanish at t = t1 and t = t2 then the surface integral will therefore give

zero, and so S is unchanged. Even if λ is non-zero at t = t1 and t = t2 then the surface

integral will just give a constant, independent of Aµ, and so the original and the gauge

transformed actions will give the same equations of motion.

4.4 Energy density and energy flux

Here, we review the calculation of energy density and energy flux in the 3-dimensional

language. After that, we shall give the more elegant 4-dimensional description.

Consider the two Maxwell equations

~∇× ~B − ∂ ~E

∂t
= 4π ~J , ~∇× ~E +

∂ ~B

∂t
= 0 . (4.45)

From these, we can deduce

~E · ∂
~E

∂t
+ ~B · ∂

~B

∂t
= ~E · (~∇× ~B − 4π ~J)− ~B · (~∇× ~E) ,

= ǫijk(Ei∂jBk −Bi∂jEk)− 4π ~J · ~E ,

= −ǫijk(Bi∂jEk + Ek∂jBi)− 4π ~J · ~E ,

= −∂j(ǫjkiEkBi)− 4π ~J · ~E ,

= −~∇ · ( ~E × ~B)− 4π ~J · ~E . (4.46)
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We then define the Poynting vector

~S ≡ 1

4π
~E × ~B , (4.47)

and so

1
2

∂

∂t
( ~E2 + ~B2) = −4π~∇ · ~S − 4π ~J · ~E , (4.48)

since ~E · ∂ ~E/∂t = 1
2∂/∂t(

~E2), etc.

We now assume that the ~E and ~B fields are confined to some finite region of space.

Integrating (4.48) over all space, we obtain

∫
~J · ~Ed3x+

1

8π

d

dt

∫
( ~E2 + ~B2)d3x = −

∫
~∇ · ~Sd3x ,

= −
∫

Σ

~S · d~Σ ,

= 0 . (4.49)

We get zero on the right-hand side because, having used the divergence theorem to convert

it to an integral over Σ, the “sphere at infinity,” the integral vanishes since ~E and ~B, and

hence ~S, are assumed to vanish there.

If the current ~J is assumed to be due to the motion of a set of charges qa with 3-velocities

~va and rest masses ma, we shall have from (4.31) and (3.12) that

∫
~J · ~Ed3x =

∑

a

qa~va · ~E(~ra) =
dEmech

dt
, (4.50)

where

Emech =
∑

a

maγa (4.51)

is the total mechanical energy for the set of particles, as defined in (3.7). Note that here

γa ≡ (1− v2a)
−1/2 . (4.52)

Thus we conclude that

d

dt

(
Emech +

1

8π

∫
( ~E2 + ~B2)d3x

)
= 0 . (4.53)

This is the equation of total energy conservation. It says that the sum of the total mechanical

energy plus the energy contained in the electromagnetic fields is a constant. Thus we

interpret

W ≡ 1

8π
( ~E2 + ~B2) (4.54)

as the energy density of the electromagnetic field.
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Returning now to equation (4.48), we can consider integrating it over just a finite volume

V , bounded by a closed 2-surface Σ. We will have

d

dt

(
Emech +

∫

V
Wd3x

)
= −

∫

Σ

~S · d~Σ . (4.55)

We now know that the left-hand side should be interpreted as the rate of change of total

energy in the volume V and so clearly, since the total energy must be conserved, we should

interpret the right-hand side as the flux of energy passing through the boundary surface Σ.

Thus we see that the Poynting vector

~S =
1

4π
~E × ~B (4.56)

is to be interpreted as the energy flux across the boundary; i.e. the energy per unit area per

unit time.

4.5 Energy-momentum tensor

The discussion above was presented within the 3-dimensional framework. In this section

we shall give a 4-dimensional spacetime description, which involves the introduction of the

energy-momentum tensor. We shall begin with a rather general introduction. In order to

simplify this discussion, we shall first describe the construction of the energy-momentum

tensor for a scalar field φ(xµ). When we then apply these ideas to electromagnetism, we

shall need to make the rather simple generalisation to the case of a Lagrangian for the

vector field Aµ(x
ν).

Recall that if we write the Maxwell tensor Fµν in terms of the 4-vector potential Aµ,

namely Fµν = ∂µAν − ∂νAµ, then the Bianchi identity ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 is

automatically solved, and so the remaining content of the source-free Maxwell equations is

just the field equation ∂µFµν = 0, which implies

Aµ − ∂µ(∂νA
ν) = 0 , (4.57)

where = ∂ν∂ν is the d’Alembertian. If we choose to work in the Lorenz gauge, ∂νA
ν = 0,

the field equation reduces to

Aµ = 0 . (4.58)

In the analogous, but simpler, example of a scalar field theory, we could consider the

field equation

φ = 0 . (4.59)
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A slightly more general possibility would be to add a “mass term” for the scalar field, and

consider the equation of motion

φ−m2φ = 0 , (4.60)

where m is a constant, describing the mass of the field. (As we shall discuss in detail later

in the course, electromagnetism is described by a massless field. At the level of a particle

description, this corresponds to the fact that the photon is a massless particle.)

The equation of motion (4.60) for the scalar field can be derived from an action. Consider

the Lagrangian density

L = −1
2(∂

µφ)(∂µφ)− 1
2m

2 φ2 . (4.61)

Varying the action S =
∫ Ld4x with respect to φ, we obtain

δS =

∫ (
− (∂µφ) ∂µδφ−m2 φ δφ

)
d4x ,

=

∫ (
∂µ∂

µφ−m2 φ
)
δφ d4x , (4.62)

where we have, as usual, dropped the boundary term when performing the integration by

parts to obtain the second line. Requiring δS = 0 for all possible δφ consistent with the

boundary conditions, we conclude that the quantity in the parentheses on the second line

must vanish, and hence we arrive at the equation of motion (4.60).

We can now extend the discussion by considering an abstract Lagrangian density L
describing a scalar field φ. We shall assume that L depends on φ, and on its first derivatives

∂νφ, but that it has no explicit dependence16 on the spacetime coordinates xµ:

L = L(φ, ∂νφ) . (4.63)

The action is then given by

S =

∫
L(φ, ∂νφ) d4x . (4.64)

The Euler-Lagrange equations for the scalar field then follow from requiring that the

action be stationary. Thus we have17

δS =

∫ [∂L
∂φ

δφ +
∂L

∂(∂νφ)
∂νδφ

]
d4x ,

16This is the analogue of a Lagrangian in classical mechanics that depends on the coordinates qi and

velocities q̇i, but which does not have explicit time dependence. Energy is conserved in a system described

by such a Lagrangian.
17Note that ∂L/∂(∂νφ) means taking the partial derivative of L viewed as a function of φ and ∂µφ, with

respect to ∂νφ. For example, if L = − 1

2
(∂µφ)(∂

µφ) + 1

2
m2φ2, then

∂L/∂(∂νφ) = −(∂µφ)
∂(∂µφ)

∂(∂νφ)
= −(∂µφ) δνµ = −∂νφ . (4.65)

Of course, in this example ∂L/∂φ is just equal to −m2 φ.
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=

∫ [∂L
∂φ

δφ − ∂ν
( ∂L
∂(∂νφ)

)
δφ
]
d4x+

∫

Σ

∂L
∂(∂νφ)

δφdΣν ,

=

∫ [∂L
∂φ

δφ − ∂ν
( ∂L
∂(∂νφ)

)
δφ
]
d4x , (4.66)

where, in getting to the last line, we have as usual dropped the surface term integrated

over the boundary cylinder Σ, since we shall insist that δφ vanishes on the endcaps of Σ

at t = t1 and t = t2, and that φ goes to zero sufficiently fast at spatial infinity. Thus the

requirement that δS = 0 for all such δφ implies the Euler-Lagrange equations18

∂L
∂φ

− ∂ν
( ∂L
∂(∂νφ)

)
= 0 . (4.67)

Now consider the expression ∂ρL = ∂L/∂xρ. Since we are assuming L has no explicit

dependence on the spacetime coordinates, it follows that ∂ρL is given by the chain rule,

∂ρL =
∂L
∂φ

∂ρφ+
∂L

∂(∂νφ)
∂ρ∂νφ . (4.68)

Now, using the Euler-Lagrange equations (4.67), we can write this as

∂ρL = ∂ν
( ∂L
∂(∂νφ)

)
∂ρφ+

∂L
∂(∂νφ)

∂ν∂ρφ ,

= ∂ν
[ ∂L
∂(∂νφ)

∂ρφ
]
, (4.69)

and thus we have

∂ν
[ ∂L
∂(∂νφ)

∂ρφ− δνρ L
]
= 0 . (4.70)

We are therefore led to define the 2-index tensor

Tρ
ν ≡ − ∂L

∂(∂νφ)
∂ρφ+ δνρ L , (4.71)

which then satisfies

∂νTρ
ν = 0 . (4.72)

T µν is called an energy-momentum tensor.

In the specific example of the Lagrangian density (4.61) for a free massive scalar field,

we see that the energy-momentum tensor will be given by

Tρ
ν = ∂νφ∂ρφ− 1

2δ
ν
ρ (∂

σφ)(∂σφ) − 1
2m

2 φ2 δνρ . (4.73)

18These are the analogue of the Euler-Lagrange equations ∂L/∂qi−d/dt(∂L/∂q̇i) = 0 in particle mechanics

for a system of particles with coordinates qi and velocities q̇i, derived from the Lagrangian L = L(qi, q̇i) by

requiring stationarity of the action S =
∫
Ldt.
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Raising the lower index and relabelling indices, we therefore have

T µν = ∂µφ∂νφ− 1
2η

µν (∂σφ) (∂σφ)− 1
2m

2 ηµν φ2 . (4.74)

It so happens in this example that Tµν has turned out to be symmetric in the indices µ and

ν, but for a more general Lagrangian density this may not necessarily happen. We shall

discuss this further below.

We saw previously that the equation ∂µJ
µ = 0 for the 4-vector current density Jµ

implies that there is a conserved charge

Q =

∫

t=const
J0dΣ0 =

∫

t=const
JµdΣµ , (4.75)

where dΣ0 = dxdydz, etc. By an identical argument, it follows that the equation ∂νTρ
ν = 0

implies that there is a conserved 4-vector:

Pµ ≡
∫

t=const
T µ0dΣ0 =

∫

t=const
T µνdΣν . (4.76)

(Of course T µν = ηµρ Tρ
ν .) Thus we may check

dPµ

dt
= ∂0

∫

t=const
T µ0d3x =

∫

t=const
∂0T

µ0d3x = −
∫

t=const
∂iT

µid3x ,

= −
∫

S
T µidSi = 0 , (4.77)

where in the last line we have used the divergence theorem to turn the integral into a 2-

dimensional integral over the boundary sphere S at infinity. This vanishes since we shall

assume the fields are zero at infinity.

Notice that T 00 = −T00 and from (4.71) we therefore have

T 00 =
∂L
∂∂0φ

∂0φ− L . (4.78)

Now for a Lagrangian L = L(qi, q̇i) we have the canonical momentum πi = ∂L/∂q̇i, and

the Hamiltonian

H = πiq̇
i − L . (4.79)

Since there is no explicit time dependence, H is conserved, and is equal to the total energy

of the system. Comparing with (4.78), we can recognise that T 00 is the energy density.

From (4.76) we therefore have that

P 0 =

∫
T 00d3x (4.80)

is the total energy. Since it is manifest from its construction that Pµ is a 4-vector, and

since its 0 component is the energy, it follows that Pµ is the 4-momentum.
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The essential point in the discussion above is that Pµ given in (4.76) should be conserved,

which requires ∂νTρ
ν = 0. The quantity Tρ

ν we constructed is not the unique tensor with

this property. We can define a new one, according to

Tρ
ν −→ Tρ

ν + ∂σψρ
νσ , (4.81)

where ψρ
νσ is an arbitrary tensor that is antisymmetric in its last two indices,

ψρ
νσ = −ψρσν . (4.82)

We shall take ψρ
νσ to vanish at spatial infinity.

The antisymmetry implies, since partial derivatives commute, that

∂ν∂σψρ
νσ = 0 , (4.83)

and hence that the modified energy-momentum tensor defined by (4.81) is conserved too.

Furthermore, the modification to Tρ
ν does not alter Pµ, since, from (4.76), the extra term

will be

Pµ
extra

=

∫

t=const
∂σψ

µνσdΣν =

∫

t=const
∂σψ

µ0σdΣ0 ,

=

∫

t=const
∂iψ

µ0id3x ,

=

∫

S
ψµ0idSi = 0 , (4.84)

where S is the sphere at spatial infinity. The modification to Pµ therefore vanishes since

we are requiring that ψρ
νσ vanishes at spatial infinity.

The energy-momentum tensor can be pinned down uniquely by requiring that the four-

dimensional angular momentum Mµν , defined by

Mµν =

∫
(xµdP ν − xνdPµ) (4.85)

be conserved, where dPµ = T µρ dΣρ, i.e. it is the integrand of the 4-momentum integral

(4.76). First, let us make a remark about angular momentum in four dimensions. In three

dimensions, we define the angular momentum 3-vector as ~L = ~r × ~p. In other words,

Li = ǫijkx
jpk = 1

2ǫijk(x
jpk − xkpj) = 1

2ǫijkM
jk , (4.86)

whereM jk ≡ xjpk−xkpj . Thus takingMµν = xµpν−xνpµ in four dimensions is a plausible-

looking generalisation. It should be noted that in a general dimension, angular momentum

is described by a 2-index antisymmetric tensor; in other words, angular momentum is
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associated with a rotation in a 2-dimensional plane. It is a very special feature of three

dimensions that we can use the ǫijk tensor to map the 2-index antisymmetric tensor M jk

into the vector Li =
1
2ǫijkM

jk. Put another way, a very special feature of three dimensions

is that a rotation in the (x, y) plane can equivalently be described as a rotation about the

orthogonal (i.e. z) axis. In higher dimensions, rotations do not occur around axes, but

rather, in 2-planes. It is amusing, therefore, to try to imagine what the analogue of an axle

is for a higher-dimensional car!

Getting back to our discussion of angular momentum and the energy-momentum tensor

in four dimensions, we are defining

Mµν =

∫
(xµdP ν − xνdPµ) =

∫
(xµ T νρ − xν T µρ)dΣρ, . (4.87)

By analogous arguments to those we used earlier, this will be conserved (i.e. dMµν/dt = 0)

if

∂ρ(x
µ T νρ − xν T µρ) = 0 . (4.88)

Distributing the derivative, we therefore have the requirement that

δµρ T
νρ + xµ ∂ρT

νρ − δνρ T
µρ − xν ∂ρT

µρ = 0 , (4.89)

and hence, since ∂ρT
µρ = 0, that T µν is symmetric,

T µν = T νµ . (4.90)

Using the freedom to add ∂σψ
µνσ to T µν , as we discussed earlier, it is always possible to

arrange for T µν to be symmetric. From now on, we shall assume that this is done.

We already saw that Pµ =
∫
T µ0d3x is the 4-momentum, so T 00 is the energy density,

and T i0 is the 3-momentum density. Let us now look at the conservation equation ∂νT
µν = 0

in more detail. Taking µ = 0, we have ∂νT
0ν = 0, or

∂

∂t
T 00 + ∂jT

0j = 0 . (4.91)

integrating over a spatial 3-volume V with boundary S, we therefore find

d

dt

∫

V
T 00d3x = −

∫

V
∂jT

0jd3x = −
∫

S
T 0jdSj . (4.92)

The left-hand side is the rate of change of field energy in the volume V , and so we can

deduce, from energy conservation, that T 0j is the energy flux 3-vector. But since we are

now working with a symmetric energy-momentum tensor, we have that T 0j = T j0, and we

already identified T j0 as the 3-momentum density. Thus we have that

energy flux = momentum density . (4.93)
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From the µ = i components of ∂νT
µν = 0, we have

∂

∂t
T i0 + ∂jT

ij = 0 , (4.94)

and so, integrating over the 3-volume V , we get

d

dt

∫

V
T i0d3x = −

∫

V
∂jT

ijd3x = −
∫

S
T ijdSj . (4.95)

The left-hand side is the rate of change of 3-momentum, and so we deduce that T ij is the

3-tensor of momentum flux density. It gives the i component of 3-momentum that flows,

per unit time, through the 2-surface perpendicular to the xj axis. T ij is sometimes called

the 3-dimensional stress tensor.

4.6 Energy-momentum tensor for the electromagnetic field

Recall that for a scalar field φ, the original construction of the energy-momentum tensor

Tρ
ν (which we later modified by adding ∂σψρ

νσ where ψρ
νσ = −ψρσν) was given by

Tρ
ν = − ∂L

∂(∂νφ)
∂ρφ+ δνρ L . (4.96)

If we have a set of N scalar fields φa, then it is easy to see that the analogous conserved

tensor is

Tρ
ν = −

N∑

a=1

∂L
∂(∂νφa)

∂ρφa + δνρ L . (4.97)

A similar calculation shows that if we consider instead a vector field Aσ, with Lagrangian

density L(Aσ, ∂νAσ), the construction will give a conserved energy-momentum tensor

Tρ
ν = − ∂L

∂(∂νAσ)
∂ρAσ + δνρ L . (4.98)

Let us apply this to the Lagrangian density for pure electrodynamics (without sources),

L = − 1

16π
FµνF

µν . (4.99)

We have

δL = − 1

8π
FµνδFµν = − 1

4π
Fµν∂µδAν , (4.100)

and so
∂L

∂(∂µAν)
= − 1

4π
Fµν . (4.101)

Thus from (4.98) we find

Tρ
ν =

1

4π
F νσ∂ρAσ −

1

16π
δνρ FσλF

σλ , (4.102)
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and so

T µν =
1

4π
F νσ∂µAσ −

1

16π
ηµν FσλF

σλ . (4.103)

This expression is not symmetric in µ and ν. However, following our previous discussion,

we can add a term ∂σψ
µνσ to it, where ψµνσ = −ψµσν , without upsetting the conservation

condition ∂νT
µν = 0. Specifically, we shall choose ψµνσ = −1/(4π)AµF νσ, and so

∂σψ
µνσ = − 1

4π
∂σ(A

µF νσ) ,

= − 1

4π
(∂σA

µ)F νσ − 1

4π
Aµ∂σF

νσ = − 1

4π
(∂σA

µ)F νσ . (4.104)

(the ∂σF
νσ term drops as a consequence of the source-free field equation.) This leads to

the new energy-momentum tensor

T µν =
1

4π
F νσ(∂µAσ − ∂σA

µ)− 1

16π
ηµν FσλF

σλ , (4.105)

or, in other words,

T µν =
1

4π

(
Fµσ F

νσ − 1
4η

µν FσλF
σλ
)
. (4.106)

This is indeed manifestly symmetric in µ and ν. From now on, it will be understood when

we speak of the energy-momentum tensor for electrodynamics that this is the one we mean.

It is a straightforward exercise to verify directly, using the source-free Maxwell field

equation and the Bianchi identity, that indeed T µν given by (4.106) is conserved, ∂νT
µν = 0.

Note that it has another simple property, namely that it is trace-free, in the sense that

ηµνT
µν = 0 . (4.107)

This is easily seen from (4.106), as a consequence of the fact that ηµνηµν = 4 in four

dimensions. The trace-free property is related to a special feature of the Maxwell equations

in four dimensions, known as conformal invariance.

Having obtained the energy-momentum tensor (4.106) for the electromagnetic field, it

is instructive to look at its components from the three-dimensional point of view. First,

recall that we showed earlier that

FσλF
σλ = 2( ~B2 − ~E2) . (4.108)

Then, we find

T 00 =
1

4π
(F 0

σF
0σ − 1

4η
00FσλF

σλ) ,

=
1

4π
(F 0iF 0i + 1

2
~B2 − 1

2
~E2) ,

=
1

4π
( ~E2 + 1

2
~B2 − 1

2
~E2) ,

=
1

8π
( ~E2 + ~B2) . (4.109)
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Thus T 00 is equal to the energy density W that we introduced in (4.54).

Now consider T 0i. Since η0i = 0, we have

T 0i =
1

4π
F 0

σF
iσ =

1

4π
F 0

j F
ij ,

=
1

4π
EjǫijkBk = Si , (4.110)

where ~S = 1/(4π) ~E× ~B is the Poynting vector introduced in (4.47). Thus T 0i is the energy

flux. As we remarked earlier, since we now have T 0i = T i0, it can be equivalently interpreted

as the 3-momentum density vector.

Finally, we consider the components T ij. We have

T ij =
1

4π

(
F iσF

jσ − 1
4η

ij2( ~B2 − ~E2)
)
,

=
1

4π

(
F i0F

j0 + F ikF
jk − 1

2δij(
~B2 − ~E2)

)
,

=
1

4π

(
− EiEj + ǫikℓǫjkmBℓBm − 1

2δij(
~B2 − ~E2)

)
,

=
1

4π

(
− EiEj + δij ~B

2 −BiBj − 1
2δij(

~B2 − ~E2)
)
,

=
1

4π

(
− EiEj −BiBj +

1
2δij(

~E2 + ~B2)
)
. (4.111)

To summarise, we have

T µν =

(
T 00 T 0j

T i0 σij

)
=

(
W Sj

Si σij

)
, (4.112)

where W and ~S are the energy density and Poynting flux,

W =
1

8π
( ~E2 + ~B2) , ~S =

1

4π
~E × ~B , (4.113)

and

σij = − 1

4π
(EiEj +BiBj) +Wδij . (4.114)

Remarks

• Unless ~E and ~B are perpendicular and equal in magnitude, we can always choose a

Lorentz frame where ~E and ~B are parallel at a point. (In the case that ~E and ~B are

perpendicular (but unequal in magnitude), one or other of ~E or ~B will be zero, at the

point, in the new Lorentz frame.)

Let the direction of ~E and ~B then be along z:

~E = (0, 0, E) , ~B = (0, 0, B) . (4.115)
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Then we have ~S = 1/(4π) ~E × ~B = 0 and

σ11 = σ22 =W , σ33 = −W , σij = 0 otherwise , (4.116)

and so T µν is diagonal, given by

T µν =




W 0 0 0

0 W 0 0

0 0 W 0

0 0 0 −W



, (4.117)

with W = 1/(8π)(E2 +B2).

• If ~E and ~B are perpendicular and | ~E| = | ~B| at a point, then at that point we can

choose axes so that

~E = (E, 0, 0) , ~B = (0, B, 0) = (0, E, 0) . (4.118)

(We shall see later on that this ~E · ~B = 0 and | ~E | = | ~B | case arises for electromagnet

plane waves.) Then we have

W =
1

4π
E2 , ~S = (0, 0,W ) ,

σ11 = σ22 = 0 , σ33 =W , σij = 0 otherwise , (4.119)

and therefore T µν is given by

T µν =




W 0 0 W

0 0 0 0

0 0 0 0

W 0 0 W



. (4.120)

4.7 Inclusion of massive charged particles

We now consider the energy-momentum tensor for a particle with rest mass m. We proceed

by analogy with the construction of the 4-current density Jµ for charged non-interacting

particles. Thus we define first a mass density, ε, for a point mass m located at ~r = ~r0(t).

This will simply be given by a 3-dimensional delta function, with strength m, located at

the instantaneous position of the mass point:

ε = mδ3(~r − ~r0(t)) . (4.121)

The energy density T 00 for the particle will then be its mass density times the corresponding

γ factor, where γ = (1− v2)−1/2, and ~v = d~r0(t)/dt is the velocity of the particle. Since the
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coordinate time t and the proper time τ in the frame of the particle are related, as usual,

by dt = γdτ , we then have

T 00 = ε
dt

dτ
. (4.122)

The 3-momentum density will be

T 0i = εγ
dxi

dt
= ε

dt

dτ

dxi

dt
. (4.123)

We can therefore write

T 0ν = ε
dt

dτ

dxν

dt
= ε

dx0

dτ

dxν

dt
. (4.124)

On general grounds of Lorentz covariance, it must therefore be that

T µν = ε
dxµ

dτ

dxν

dt
,

= ε
dxµ

dτ

dxν

dτ

dτ

dt
,

=
ε

γ

dxµ

dτ

dxν

dτ
(4.125)

By writing it as we have done in the second line here, it becomes manifest that T µν for the

particle is symmetric in µ and ν.

Consider now a system consisting of a particle with mass m and charge q, moving

in an electromagnetic field. Clearly, since the particle interacts with the field, we should

not expect either the energy-momentum tensor (4.106) for the electromagnetic field or

the energy-momentum tensor (4.125) for the particle to be conserved separately. This is

because energy, and momentum, is being exchanged between the particle and the field. We

can expect, however, that the total energy-momentum tensor for the system, i.e. the sum

of (4.106) and (4.125), to be conserved.

In order to distinguish clearly between the various energy-momentum tensors, let us

define

T µνtot. = T µνe.m. + T µνpart. , (4.126)

where T µνe.m. and T
µν
part. are the energy-momentum tensors for the electromagnetic field and

the particle respectively:

T µνe.m. =
1

4π

(
Fµσ F

νσ − 1
4η

µν FσλF
σλ
)
,

T µνpart. = ε
dxµ

dτ

dxν

dt
, (4.127)

where ε = mδ3(~r − ~r0(t)).
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Consider T µνe.m. first. Taking the divergence, we find

∂νT
µν
e.m. =

1

4π

(
∂νF

µ
σ F

νσ + Fµσ ∂νF
νσ − 1

2F
σλ∂µFσλ

)
,

=
1

4π

(
∂νF

µ
σ F

νσ + Fµσ ∂νF
νσ + 1

2F
σλ∂σFλ

µ + 1
2F

σλ∂λF
µ
σ

)
,

=
1

4π

(
∂νF

µ
σ F

νσ − 1
2F

σλ∂σF
µ
λ − 1

2F
λσ∂λF

µ
σ + Fµσ ∂νF

νσ
)
,

=
1

4π
Fµσ ∂νF

νσ ,

= −Fµν Jν . (4.128)

In getting to the second line we used the Bianchi identity on the last term in the top line.

The third line is obtained by swapping indices on a field strength in the terms with the 1
2

factors, and this reveals that all except one term cancel, leading to the result. As expected,

the energy-momentum tensor for the electromagnetic field by itself is not conserved when

there are sources.

Now we want to show that this non-conservation is balanced by an equal and opposite

non-conservation for the energy-momentum tensor of the particle, which is given in (4.127).

We have

∂νT
µν
part. = ∂ν

(
ε
dxν

dt

)dxµ

dτ
+ ε

dxν

dt
∂ν
(dxµ

dτ

)
. (4.129)

The first term is zero. This can be seen from the fact that the calculation is identical to

the one which we used a while back in section 4.3 to show that the 4-current Jµ = ρdxµ/dt

for a charged particle is conserved. Thus we have

∂νT
µν
part. = ε

dxν

dt
∂ν
(dxµ

dτ

)
= ε

dxν

dt
∂νU

µ ,

= ε
dUµ

dt
. (4.130)

By the Lorentz force equation mdUµ/dτ = qFµνU
ν , we have

ε
dUµ

dτ
= ρFµνU

ν = ρFµν
dxν

dτ
, (4.131)

and so

ε
dUµ

dt
= ρFµν

dxν

dt
= FµνJ

ν , (4.132)

since Jµ = ρdxµ/dt. Thus we conclude that

∂νT
µν
part. = FµνJ

ν , (4.133)

and so, combining this with (4.128), we conclude that the total energy-momentum tensor

for the particle plus electromagnetic field, defined in (4.126) is conserved,

∂νT
µν
tot. = 0 . (4.134)
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5 Coulomb’s Law

5.1 Potential of a point charge

Consider first a static point charge, for which the Maxwell equations therefore reduce to

~∇× ~E = 0 , ~∇ · ~E = 4πρ . (5.1)

The first equation implies, of course, that we can write

~E = −~∇φ , (5.2)

and then the second equation implies that φ satisfies the Poisson equation

∇2φ = −4πρ . (5.3)

If the point charge is located at the origin, and the charge is e, then the charge density

ρ is given by

ρ = e δ3(~r) . (5.4)

Away from the origin, (5.3) implies that φ should satisfy the Laplace equation,

∇2φ = 0 , |~r| > 0 . (5.5)

Since the charge density (5.4) is spherically symmetric, we can assume that φ will be

spherically symmetric too, φ(~r) = φ(r), where r = |~r|. From r2 = xjxj we deduce, by

acting with ∂i, that

∂ir =
xi

r
. (5.6)

From this it follows by the chain rule that

∂iφ = φ′∂ir = φ′
xi

r
, (5.7)

where φ′ ≡ dφ/dr, and hence

∇2φ = ∂i∂iφ = ∂i
(
φ′
xi

r

)
= φ′′

xi

r

xi

r
+ φ′

∂ix
i

r
+ φ′xi∂i

1

r
,

= φ′′ +
2

r
φ′ . (5.8)

Thus the Laplace equation (5.5) can be written as

(r2φ′)′ = 0 , r > 0 , (5.9)
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which integrates to give

φ =
q

r
, (5.10)

where q is a constant, and we have dropped an additive constant of integration by using

the gauge freedom to choose φ(∞) = 0.

To determine the constant q, we integrate the Poisson equation (5.3) over the interior

VR of a sphere of radius R centred on the origin, and use the divergence theorem:

∫

VR

∇2φd3x = −4πe

∫

VR

δ3(~r)d3x = −4πe ,

=

∫

SR

~∇φ · d~S =

∫

SR

∂i
(q
r

)
dSi ,

= −q
∫

SR

xidSi
r3

= −q
∫

SR

nidSi
R2

, (5.11)

where SR is the surface of the sphere of radius R that bounds the volume VR, and n
i ≡ xi/r

is the outward-pointing unit vector. Clearly we have

nidSi = R2dΩ , (5.12)

where dΩ is the area element on the unit-radius sphere, and so

−q
∫

SR

nidSi
r2

= −q
∫
dΩ = −4πq , (5.13)

and so we conclude that q is equal to e, the charge on the point charge at r = 0.

Note that if the point charge e were located at ~r ′, rather than at the origin, then by

trivially translating the coordinate system we will have the potential

φ(~r) =
e

|~r − ~r ′| , (5.14)

and this will satisfy

∇2φ = −4πeδ3(~r − ~r ′) . (5.15)

5.2 Electrostatic energy

In general, the energy density of an electromagnetic field is given by W = 1/(8π)( ~E2+ ~B2).

A purely electrostatic system therefore has a field energy U given by

U =

∫
Wd3x =

1

8π

∫
~E2d3x ,

= − 1

8π

∫
~E · ~∇φd3x ,

= − 1

8π

∫
~∇ · ( ~E φ)d3x+

1

8π

∫
(~∇ · ~E)φd3x ,
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= − 1

8π

∫

S

~E φ · d~S + 1
2

∫
ρφd3x ,

= 1
2

∫
ρφd3x . (5.16)

Note that the surface integral over the sphere at infinity gives zero because the electric field

is assumed to die away to zero there. Thus we conclude that the electrostatic field energy

is given by

U = 1
2

∫
ρφd3x . (5.17)

We can apply this formula to a system of N charges qa, located at points ~ra, for which

we shall have

ρ =
N∑

a=1

qaδ
3(~r − ~ra) . (5.18)

However, a naive application of (5.17) would give nonsense, since we find

U = 1
2

N∑

a=1

qa

∫
δ3(~r − ~ra)φ(~r)d

3x = 1
2

N∑

a=1

qaφ(~ra) , (5.19)

where φ(~r) is given by (5.14),

φ(~r) =
N∑

b=1

qb
|~r − ~rb|

, (5.20)

This means that (5.19) will give infinity since φ(~r), not unreasonably, diverges at the location

of each point charge.

This is the classic “self-energy” problem, which one encounters even for a single point

charge. There is no totally satisfactory way around this in classical electromagnetism, and

so one has to adopt a “fudge.” The fudge consists of observing that the true self-energy

of a charge, whatever that might mean, is a constant. Naively, it appears to be an infinite

constant, but that is clearly the result of making the idealised assumption that the charge

is literally located at a single point. In any case, one can argue that the constant self-energy

will not be observable, as far as energy-conservation considerations are concerned, and so

one might as well just drop it for now. Thus the way to make sense of the ostensibly

divergent energy (5.19) for the system of point charges is to replace φ(~ra), which means the

potential at ~r = ~ra due to all the charges, by φa, which is defined to be the potential at

~r = ~ra due to all the charges except the charge qa that is itself located at ~r = ~ra. Thus we

have

φa ≡
∑

b6=a

qb
|~ra − ~rb|

, (5.21)

and so (5.19) is now interpreted to mean that the total energy of the system of charges is

U = 1
2

∑

a

∑

b6=a

qaqb
|~ra − ~rb|

. (5.22)
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5.3 Field of a uniformly moving charge

Suppose a charge e is moving with uniform velocity ~v in the Lorentz frame S. We may

transform to a frame S′, moving with velocity ~v relative to S, in which the charge is at

rest. For convenience, we shall choose the origin of axes so that the charge is located at the

origin of the frame S′.

It follows that in the frame S′, the field due to the charge can be described purely by

the electric scalar potential φ′:

In S′: φ′ =
e

r′
, ~A′ = 0 . (5.23)

(Note that the primes here all signify that the quantities are those of the primed frame S′.)

We know that Aµ = (φ, ~A) is a 4-vector, and so the components Aµ transform under

Lorentz boosts in exactly the same way as the components of xµ. Thus we shall have

φ′ = γ (φ− ~v · ~A) , ~A′ = ~A+
γ − 1

v2
(~v · ~A)~v − γ~v φ , (5.24)

where γ = (1− v2)−1/2. Clearly the inverse Lorentz transformation is obtained by swiching

the roles of the primed and unprimed fields and sending ~v → −~v, and so we shall have

φ = γ (φ′ + ~v · ~A′) , ~A = ~A′ +
γ − 1

v2
(~v · ~A′)~v + γ~v φ′ . (5.25)

From (5.23), we therefore find that the potentials in the frame S, in which the particle is

moving with velocity ~v, are given by

φ = γφ′ =
eγ

r′
, ~A = γ~v φ′ =

eγ~v

r′
. (5.26)

Note that we still have r′ appearing in the denominator, which we would now like to

express in terms of the unprimed coordinates.

Suppose, for example, that we orient the axes so that ~v lies along the x direction. Then

we shall have

x′ = γ(x− vt) , y′ = y , z′ = z , (5.27)

and so

r′2 = x′2 + y′2 + z′2 = γ2(x− vt)2 + y2 + z2 . (5.28)

It follows therefore from (5.26) that the scalar and 3-vector potentials in the frame S are

given by

φ =
e

R∗
, ~A =

e~v

R∗
, (5.29)
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where we have defined

R2
∗ ≡ (x− vt)2 + (1− v2)(y2 + z2) . (5.30)

The electric and magnetic fields can now be calculated in the standard way from φ and

~A, as in (2.8). Alternatively, and equivalently, we can first calculate ~E′ and ~B′ in the primed

frame, and then Lorentz transform these back to the unprimed frame. In the frame S′, we

shall of course have

~E′ =
e~r ′

r′3
, ~B′ = 0 . (5.31)

The transformation to the unprimed frame is then given by inverting the standard results

(2.51) and (2.52) that express ~E′ and ~B′ in terms of ~E and ~B. Again, this is simply achieved

by interchanging the primed and unprimed fields, and sending ~v to −~v. This gives

~E = γ( ~E′ − ~v × ~B′)− γ − 1

v2
(~v · ~E′)~v ,

~B = γ( ~B′ + ~v × ~E′)− γ − 1

v2
(~v · ~B′)~v , (5.32)

and so from (5.31), we find that ~E and ~B in the frame S are given by

~E =
eγ~r ′

r′3
− γ − 1

v2
e~v · ~r ′

r′3
~v ,

~B = γ~v × ~E′ =
eγ~v × ~r ′

r′3
. (5.33)

Let us again assume that we orient the axes so that ~v lies along the x direction. Then

from the above we find that

Ex =
ex′

r′3
, Ey =

eγy′

r′3
, Ez =

eγz′

r′3
, (5.34)

and so

Ex =
eγ(x− vt)

r′3
, Ey =

eγy

r′3
, Ez =

eγz

r′3
. (5.35)

Since the charge is located at the point (vt, 0, 0) in the frame S, it follows that the vector

from the charge to the point ~r = (x, y, z) is

~R = (x− vt, y, z) . (5.36)

From (5.35), we then find that the electric field is given by

~E =
eγ ~R

r′3
=
e(1− v2)~R

R3∗
, (5.37)

where R∗ was defined in (5.30).
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If we now define θ to be the angle between the vector ~R and the x axis, then the

coordinates (x, y, z) of the observation point P will be such that

y2 + z2 = R2 sin2 θ , where R2 = |~R|2 = (x− vt)2 + y2 + z2 . (5.38)

This implies, from (5.30), that

R2
∗ = R2 − v2(y2 + z2) = R2(1− v2 sin2 θ) , (5.39)

and so the electric field due to the moving charge is

~E =
e~R

R3

1− v2

(1− v2 sin2 θ)3/2
. (5.40)

For an observation point P located on the x axis, the electric field will be E‖ (parallel

to the x axis), and given by setting θ = 0 in (5.40). On the other hand, we can define the

electric field E⊥ in the (y, z) plane (corresponding to θ = π/2). From (5.40) we therefore

have

E‖ =
e(1− v2)

R2
, E⊥ =

e(1− v2)−1/2

R2
. (5.41)

Note that E‖ has the smallest magnitude, and E⊥ has the largest magnitude, that ~E attains

as a function of θ.

When the velocity is very small, the magnitude of the electric field is (as one would

expect) more or less independent of θ. However, as v approaches 1 (the speed of light), we

find that E‖ decreases to zero, while E⊥ diverges. Thus for v near to the speed of light the

electric field is very sharply peaked around θ = π/2. If we set

θ =
π

2
− ψ , (5.42)

then

| ~E| = e(1 − v2)

R2(1− v2 cos2 ψ)3/2
≈ e(1 − v2)

(1− v2 + 1
2ψ

2)3/2
(5.43)

if v ≈ 1. Thus the angular width of the peak is of the order of

ψ ∼
√
1− v2 . (5.44)

We saw previously that the magnetic field in the frame S is given by ~B = γ~v× ~E′. From

(5.33) we have ~v × ~E = γ~v × ~E′, and so therefore

~B = ~v × ~E =
e(1 − v2)~v × ~R

R3∗
. (5.45)

Note that if |~v| << 1 we get the usual non-relativistic expressions

~E ≈ e~R

R3
, ~B ≈ e~v × ~R

R3
. (5.46)
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5.4 Motion of a charge in a Coulomb potential

We shall consider a particle of mass m and charge e moving in the field of a static charge

Q. The classic “Newtonian” result is very familiar, with the orbit of the particle being

a conic section; an ellipse, a parabola or a hyperbola, depending on the charges and the

orbital parameters. In this section we shall consider the fully relativistic problem, when the

velocity of the particle is not necessarily small compared with the speed of light.

The Lagrangian for the system is given by (2.79), with φ = Q/r and ~A = 0:

L = −m(1− ẋiẋi)1/2 − eQ

r
, (5.47)

where ẋi = dxi/dt, and r2 = xixi. The charges occur in the combination eQ throughout

the calculation, and so for convenience we shall define

κ ≡ eQ . (5.48)

It is convenient to introduce spherical polar coordinates in the standard way,

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ , (5.49)

and then the Lagrangian becomes

L = −m(1− ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2)1/2 − κ

r
. (5.50)

The Lagrangian is of the form L = L(qi, q̇i) for coordinates qi and velocities q̇i. The Euler-

Lagrange equations are
∂L

∂qi
− d

dt

(∂L
∂q̇i

)
= 0 . (5.51)

Note that if L is independent of a particular coordinate, say qj, there is an associated

conserved quantity ∂L/∂q̇i:
d

dt

∂L

∂q̇j
= 0 . (5.52)

The Euler-Lagrange equation for θ gives

r2 sin θ cos θϕ̇2(1− ṙ2−r2θ̇2−r2 sin2 θϕ̇2)−1/2− d

dt

(
r2θ̇(1− ṙ2−r2θ̇2−r2 sin2 θϕ̇2)−1/2

)
= 0 .

(5.53)

It can be seen that a solution to this equation is to take θ = π/2, and θ̇ = 0. In other

words, if the particle starts out moving in the θ = π/2 plane (i.e. the (x, y) plane at z = 0),

it will remain in this plane. This is just the familiar result that the motion of a particle

moving under a central force lies in a plane. We may therefore assume now, without loss
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of generality, that θ = π/2 for all time. We are left with just r and ϕ as polar coordinates

in the (x, y) plane. The Lagrangian for the reduced system, where we consistently can set

θ = π/2, is then simply

L = −m(1− ṙ2 − r2ϕ̇2)1/2 − κ

r
. (5.54)

We note that ∂L/∂ϕ = 0, and so there is a conserved quantity

∂L

∂ϕ̇
= mr2ϕ̇(1− ṙ2 − r2ϕ̇2)−1/2 = ℓ , (5.55)

where ℓ is a constant. Since (1− ṙ2 − r2ϕ̇2)−1/2 = γ, we simply have

mγr2ϕ̇ = ℓ . (5.56)

Note that we can also write this as

mr2
dϕ

dτ
= ℓ , (5.57)

since coordinate time t and proper time τ are related by dτ = dt/γ.

Since the Lagrangian does not depend explicitly on t, the total energy E is also conserved.

Thus we have

E = H =
√
~p 2 +m2 +

κ

r
(5.58)

is a constant. Here,

~p 2 = m2γ2~v2 = m2γ2ṙ2 +m2γ2r2ϕ̇2 ,

= m2
(dr
dτ

)2
+m2r2

(dϕ
dτ

)2
, (5.59)

since, as usual, coordinate time and proper time are related by dτ = dt/γ.

We therefore have

(
E − κ

r

)2
= ~p 2 +m2 = m2

(dr
dτ

)2
+m2r2

(dϕ
dτ

)2
+m2 . (5.60)

We now perform the standard change of variables in orbit calculations, and let

r =
1

u
. (5.61)

This implies
dr

dτ
= − 1

u2
du

dτ
= − 1

u2
du

dϕ

dϕ

dτ
= − ℓ

m
u′ , (5.62)

where we have used (5.57) and also we have defined

u′ ≡ du

dϕ
. (5.63)
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It now follows that (5.60) becomes

(E − κu)2 = ℓ2u′2 + ℓ2u2 +m2 . (5.64)

This ordinary differential equation can be solved in order to find u as a function of ϕ, and

hence r as a function of ϕ. The solution determines the shape of the orbit of the particle

around the fixed charge Q.

Rewriting (5.64) as19

ℓ2u′2 =
(
u
√
κ2 − ℓ2 − κE√

κ2 − ℓ2

)2
−m2 − E2ℓ2

κ2 − ℓ2
, (5.65)

we see that it is convenient to make a change of variable from u to w, defined by

u
√
κ2 − ℓ2 − κE√

κ2 − ℓ2
= ±

√

m2 +
E2ℓ2

κ2 − ℓ2
coshw , (5.66)

where the + sign is chosen if κ < 0 (attractive potential), and the − sign if κ > 0 (repulsive

potential). We can then integrate (5.65), to obtain

ℓ√
κ2 − ℓ2

w = ϕ , (5.67)

(making a convenient choice, without loss of generality, for the constant of integration), and

hence we have

√
κ2 − ℓ2 u = ±

√

m2 +
E2ℓ2

κ2 − ℓ2
cosh

[(κ2

ℓ2
− 1

)1/2
ϕ
]
+

κE√
κ2 − ℓ2

. (5.68)

In other words, the orbit is given, in terms of r = r(ϕ), by

κ2 − ℓ2

r
= ±

√
E2ℓ2 +m2(κ2 − ℓ2) cosh

[(κ2

ℓ2
− 1

)1/2
ϕ
]
+ κE . (5.69)

The solution (5.69) is presented for the case where |ℓ| < |κ|. If instead |ℓ| > |κ|, it
becomes

ℓ2 − κ2

r
=
√
E2ℓ2 −m2(ℓ2 − κ2) cos

[(
1− κ2

ℓ2

)1/2
ϕ
]
− κE . (5.70)

Finally, if |ℓ| = |κ|, it is easier to go back to the equation (5.65) and re-solve it directly

in this case, leading to
2κE
r

= E2 −m2 − E2 ϕ2 . (5.71)

19This “completing of the square” is appropriate for the case where |ℓ| < |κ|. If instead |ℓ| > |κ|, we would

write

ℓ2u′2 = −
(
u
√
ℓ2 − κ2 +

κE√
ℓ2 − κ2

)2

−m2 +
E2ℓ2

ℓ2 − κ2
.
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The situation described above for relativistic orbits should be contrasted with what

happens in the non-relativistic case. In this limit, the Lagrangian (after restricting to

motion in the (x, y) plane again) is simply given by

L = 1
2m(ṙ2 + r2ϕ̇2)− κ

r
. (5.72)

Note that this can be obtained from the relativisitic Lagrangian (5.54) we studied above,

by taking ṙ and rϕ̇ to be small compared to 1 (the speed of light), and then expanding the

square root to quadratic order in velocities. As discussed previously, one can ignore the

leading-order term −m in the expansion, since this is just a constant (the rest-mass energy

of the particle) and so it does not enter in the Euler-Lagrange equations. The analysis of

the Euler-Lagrange equations for the non-relativistic Lagrangian (5.72) is a standard one.

There are conserved quantities

E = 1
2m(ṙ2 + r2ϕ̇2) +

κ

r
, ℓ = mr2ϕ̇ . (5.73)

Substituting the latter into the former give the standard radial equation, whose solution

implies closed elliptical orbits given by

1

r
=
mκ

ℓ2

(
√

1 +
2Eℓ2

mκ2
cosϕ− 1

)
. (5.74)

(This is for the case E > −mκ2/(2ℓ2). If E < −mκ2/(2ℓ2) the orbits are hyperbolae, while

in the intermediate case E = −mκ2/(2ℓ2) the orbits are parabolic.)

The key difference in the relativistic case is that the orbits do not have a 2π periodicity

in ϕ, even when |ℓ| > |κ|, as in (5.70), for which the radius r is a trigonometric function of

ϕ. The reason for this is that the argument of the trigonometric function is

(
1− κ2

ℓ2

)1/2
ϕ , (5.75)

and so ϕ has to increase through an angle ∆ϕ given by

∆ϕ = 2π
(
1− κ2

ℓ2

)−1/2
(5.76)

before the cosine completes one cycle. If we assume that |κ/ℓ| is small compared with 1,

then the shape of the orbit is still approximately like an ellipse, except that the “perihelion”

of the ellipse advances by an angle

δϕ = 2π
[(
1− κ2

ℓ2

)−1/2
− 1

]
≈ πκ2

ℓ2
(5.77)

per orbit. Generically, the orbits are not closed, although they will be in the special case

that
(
1− κ2

ℓ2

)−1/2
is rational.
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The fact that the major axis of the ellipse remains fixed in the non-relativistic case is a

reflection of the fact that there is an additional “hidden” symmetry in the non-relativistic

system, which is broken by the relativistic corrections. Specifically, there is a conserved

quantity called the Runge-Lenz vector in the non-relativistic theory of a particle of mass m

moving in a central 1/r2 force ~F = −k~r/r3. It is given by

~W = ~p× ~L− mk~r

r
, (5.78)

where ~L = ~r × ~p is the angular momentum of the particle about the force centre. It is

straightforward to verify that the equations of motion following from the non-relativistic

Lagrangian L = 1
2mẋ

2
i −km/r imply that d ~W/dt = 0. The Runge-Lenz vector points along

the major axis of the elliptical orbit.

If on the other hand |ℓ| ≤ |κ|, then if κ < 0 (which means eQ < 0 and hence an attractive

force between the charges), the particle spirals inwards and eventually reaches r = 0 within

a finite time. This can never happen in the non-relativisitic case; the orbit of the particle

can never reach the origin at r = 0, unless the angular momentum ℓ is exactly zero. The

reason for this is that the centrifugal potential term ℓ2/r2 always throws the particle away

from the origin if r tries to get too small. By contrast, in the relativisitic case the effect

of the centrifugal term is reduced at large velocity, and it cannot prevent the collapse of

the orbit to r = 0. This can be seen by looking at the conserved quantity E in the fully

relativisitic analysis, which, from our discussion above, can be written as

E =
(
m2 +m2

(dr
dτ

)2
+
ℓ2

r2

)1/2
+
κ

r
. (5.79)

First, consider the non-relativistic limit, for which the rest-mass term dominates inside the

square root:

E ≈ m+ 1
2m
(dr
dt

)2
+

ℓ2

2mr2
+
κ

r
. (5.80)

Here, we see that even if κ < 0 (an attractive force), the repulsive centrifugal term always

wins over the attractive charge term κ/r at small enough r.

On the other hand, if we keep the full relativistic expression (5.79), then at small

enough r the competition between the centrifugal term and the charge term becomes “evenly

matched,”

E ≈ |ℓ|
r

+
κ

r
, (5.81)

and clearly if κ < −|ℓ| the attraction between the charges wins the contest.
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6 Electromagnetic Waves

6.1 Wave equation

As discussed at the beginning of the course (see section 1.1), Maxwell’s equations admit

wave-like solutions. These solutions can esist in free space, in a region where there are no

source currents, for which the equations take the form

~∇ · ~E = 0 , ~∇× ~B − ∂ ~E

∂t
= 0 ,

~∇ · ~B = 0 , ~∇× ~E +
∂ ~B

∂t
= 0 . (6.1)

As discussed in section 1.1, taking the curl of the ~∇ × ~E equation, and using the ~∇ × ~B

equation, one finds

∇2 ~E − ∂2 ~E

∂t2
= 0 , (6.2)

and similarly,

∇2 ~B − ∂2 ~B

∂t2
= 0 . (6.3)

Thus each component of ~E and each component of ~B satisfies d’Alembert’s equation

∇2f − ∂2f

∂t2
= 0 . (6.4)

This can, of course, be written as

f ≡ ∂µ∂µf = 0 , (6.5)

which shows that d’Alembert’s operator is Lorentz invariant.

The wave equation (6.4) admits plane-wave solutions, where f depends on t and on a

single linear combination of the x, y and z coordinates. By choosing the orientation of the

axes appropriately, we can make this linear combination become simply x. Thus we may

seek solutions of (6.4) of the form f = f(t, x). The function f will then satisfy

∂2f

∂x2
− ∂2f

∂t2
= 0 , (6.6)

which can be written in the factorised form

( ∂
∂x

− ∂

∂t

)( ∂
∂x

+
∂

∂t

)
f(t, x) = 0 . (6.7)

Now introduce “light-cone coordinates”

u = x− t , v = x+ t . (6.8)
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We see that
∂

∂x
=

∂

∂u
+

∂

∂v
,

∂

∂t
= − ∂

∂u
+

∂

∂v
, (6.9)

and so (6.7) becomes
∂2f

∂u∂v
= 0 . (6.10)

The general solution to this is

f = f+(u) + f−(v) = f+(x− t) + f−(x+ t) , (6.11)

where f+ and f− are arbitrary functions.

The functions f± determine the profile of a wave-like disturbance that propagates at the

speed of light (i.e. at speed 1). In the case of a wave described by f+(x− t), the disturbance
propagtes at the speed of light in the positive x direction. This can be seen from the fact that

if we sit at a given point on the profile (i.e. at a fixed value of the argument of the function

f+), then as t increases the x value must increase too. This means that the disturbance

moves, with speed 1, along the positive x direction. Likewise, a wave described by f−(x+ t)

moves in the negative x direction as time increases.

More generally, we can consider a plane-wave disturbance moving along the direction of

a unit 3-vector ~n:

f(t, ~r) = f+(~n · ~r − t) + f−(~n · ~r + t) . (6.12)

The f+ wave moves in the direction of ~n as t increases, while the f− wave moves in the

direction of −~n. The previous case of propagation along the x axis, corresponds to taking

~n = (1, 0, 0).

Let us now return to the discussion of electromagnetic waves. Following the discussion

above, there will exist plane-wave solutions of (6.2), propagating along the ~n direction, of

the form

~E(~r, t) = ~E(~n · ~r − t) . (6.13)

From the Maxwell equation ∂ ~B/∂t = −~∇× ~E, we shall therefore have

∂Bi
∂t

= −ǫijk∂j Ek(nℓxℓ − t) ,

= −ǫijknj E′(nℓxℓ − t) , (6.14)

where E′
k denotes the derivative of Ek with respect to its argument. We also have that

∂Ek(nℓxℓ − t)/∂t = −E′
k(nℓxℓ − t), and so we can write (6.14) as

∂Bi
∂t

= ǫijk nj
∂

∂t
Ek(nℓxℓ − t) . (6.15)

85



This can be integrated with respect to t, dropping the constant of integration since an

additional static ~B field term is of no interest to us when discussing electromagnetic waves.

Thus we have

Bi = ǫijknjEk , i.e. ~B = ~n× ~E . (6.16)

The source-free Maxwell equation ~∇ · ~E = 0 implies

∂iEi(njxj − t) = niE
′
i(njxj − t) = − ∂

∂t
~n · ~E = 0 . (6.17)

Again, we can drop the constant of integration, and conclude that for the plane wave

~n · ~E = 0 . (6.18)

Since ~B = ~n× ~E, it immediately follows that ~n · ~B = 0 and ~E · ~B = 0 also. Thus we see that

for a plane electromagnetic wave propagating along the ~n direction, the ~E and ~B vectors

are orthogonal to ~n and also orthogonal to each other:

~n · ~E = 0 , ~n · ~B = 0 , ~E · ~B = 0 . (6.19)

It also follows from ~B = ~n× ~E that

| ~E| = | ~B| , i.e. E = B . (6.20)

Thus we find that the energy density W is given by

W =
1

8π
(E2 +B2) =

1

4π
E2 . (6.21)

The Poynting flux ~S = ( ~E × ~B)/(4π) is given by

Si =
1

4π
ǫijkEjǫkℓmnℓEm =

1

4π
niEjEj −

1

4π
EinjEj ,

=
1

4π
niEjEj , (6.22)

and so we have

W =
1

4π
E2 , ~S =

1

4π
~nE2 = ~nW . (6.23)

Note that the argument ~n · ~r − t can be written as

~n · ~r − t = nµ x
µ , (6.24)

where nµ = (−1, ~n) and hence

nµ = (1, ~n) . (6.25)
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Since ~n is a unit vector, ~n · ~n = 1, we have

nµnµ = ηµν n
µnν = 0 . (6.26)

nµ is called a Null Vector. This is a non-vanishing vector whose norm nµnµ vanishes.

Such vectors can arise because of the minus sign in the η00 component of the 4-metric.

By contrast, in a metric of positive-definite signature, such as the 3-dimensional Euclidean

metric δij , a vector whose norm vanishes is itself necessarily zero.

We can now evaluate the various components of the energy-momentum tensor, which

are given by (4.112) and the equations that follow it. Thus we have

T 00 = W =
1

4π
E2 =

1

4π
B2 ,

T 0i = T i0 = Si = niW ,

T ij =
1

4π
(−EiEj −BiBj +

1
2 (E

2 +B2)δij) ,

=
1

4π
(−EiEj − ǫikℓǫjmnnknmEℓEn +E2δij) ,

=
1

4π
(−EiEj − δijE

2 − ninkEkEj − njnℓEℓEi + δijnknℓEkEℓ

+ninjEℓEℓ + nknkEiEj + E2δij) ,

=
1

4π
ninjE

2 = ninjW . (6.27)

Note that in deriving this last result, we have used the identity

ǫikℓǫjmn = δijδkmδℓn + δimδknδℓj + δinδkjδℓm − δimδkjδℓn − δijδknδℓm − δinδkmδℓj . (6.28)

The expressions for T 00, T 0i and T ij can be combined into the single Lorentz-covariant

expression

T µν = nµ nνW . (6.29)

From this, we can compute the conserved 4-momentum

Pµ =

∫

t=const.
T µνdΣν =

∫
T µ0d3x ,

=

∫
nµWd3x = nµ

∫
Wd3x , (6.30)

and hence we have

Pµ = nµ E , (6.31)

where

E =

∫
Wd3x , (6.32)

the total energy of the electromagnetic field. Note that Pµ is also a null vector,

PµPµ = E2 nµnµ = 0 . (6.33)

87



6.2 Monochromatic plane waves

In the discussion above, we considered plane electromagnetic waves with an arbitrary profile.

A special case is to consider the situation when the plane wave has a definite frequency ω,

so that its time dependence is of the form cosωt. Thus we can write

~E = ~E0 e
i(~k·~r−ωt) , ~B = ~B0 e

i(~k·~r−ωt) , (6.34)

where ~E0 and ~B0 are (possibly complex) constants. The physical ~E and ~B fields are obtained

by taking the real parts of ~E and ~B. (Since the Maxwell equations are linear, we can always

choose to work in such a complex notation, with the understanding that we take the real

parts to get the physical quantities.)

As we shall discuss in some detail later, the more general plane-wave solutions discussed

previously, with an arbitrary profile for the wave, can be built up as linear combinations of

the monochromatic plane-wave solutions.

Of course, for the fields in (6.34) to solve the Maxwell equations, there must be relations

among the constants ~k, ω, ~E0 and ~B0. Specifically, since ~E and ~B must satisfy the wave

equations (6.2) and (6.3), we must have

~k2 = ω2 , (6.35)

and since ~∇ · ~E = 0 and ~∇ · ~B = 0, we must have

~k · ~E0 = 0 , ~k · ~B0 = 0 . (6.36)

Finally, following the discussion in the more general case above, it follows from ~∇ × ~E +

∂ ~B/∂t = 0 and ~∇× ~B − ∂ ~E/∂t = 0 that

~B =
~k × ~E

ω
. (6.37)

It is natural, therefore, to introduce the 4-vector

kµ = (ω,~k) = ω nµ , (6.38)

where nµ = (1, ~n) and ~n = ~k/|~k| = ~k/ω. Equation (6.35) then becomes simply the statement

that kµ is a null vector,

kµkµ = 0 . (6.39)

Note that the argument of the exponentials in (6.34) can now be written as

~k · ~r − ωt = kµx
µ , (6.40)
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which we shall commonly write as k · x. Thus we may rewrite (6.34) more briefly as

~E = ~E0 e
i k·x , ~B = ~B0 e

i k·x . (6.41)

As usual, we have a plane transverse wave, propagating in the direction of the unit 3-vector

~n = ~k/ω. The term “transverse” here signifies that ~E and ~B are perpendicular to the

direction in which the wave is propagating. In fact, we have

~n · ~E = ~n · ~B = 0 , ~B = ~n× ~E , (6.42)

and so we have also that ~E and ~B are perpendicular to each other, and that | ~E| = ~B|.
Consider the case where ~E0 is taken to be real, which means that ~B0 is real too. Then

the physical fields (obtained by taking the real parts of the fields given in (6.34)), are given

by

~E = ~E0 cos(~k · ~r − ωt) , ~B = ~B0 cos(~k · ~r − ωt) . (6.43)

The energy density is then given by

W =
1

8π
(E2 +B2) =

1

4π
E2

0 cos2(~k · ~r − ωt) . (6.44)

If we define the time average of W by

〈W 〉 ≡ 1

T

∫ T

0
Wdt , (6.45)

where T = 2π/ω is the period of the oscillation, then we shall have

〈W 〉 = 1

8π
E2

0 =
1

8π
B2

0 . (6.46)

Note that in terms of the complex expressions (6.34), we can write this as

〈W 〉 = 1

8π
~E · ~E∗ =

1

8π
~B · ~B∗ , (6.47)

where the ∗ denotes complex conjugation, since the time and position dependence of ~E or

~B is cancelled when multiplied by the complex conjugate field.20

In general, when ~E0 and ~B0 are not real, we shall also have the same expressions (6.47)

for the time-averaged energy density.

In a similar manner, we can evaluate the time average of the Poynting flux vector

~S = ( ~E × ~B)/(4π). If we first consider the case where ~E0 is real, we shall have

~S =
1

4π
~E × ~B =

1

4π
~E0 × ~B0 cos

2(~n · ~r − ωt) =
1

4π
~nE2

0 cos
2(~n · ~r − ωt) , (6.48)

20This “trick,” of expressing the time-averaged energy density in terms of the dot product of the complex

field with its complex conjugate, is rather specific to this situation, where the quantity being time-averaged

is quadratic in the electric and magnetic fields.
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and so

〈~S〉 = 1

8π
~E0 × ~B0 =

1

8π
~nE2

0 . (6.49)

In general, even if ~E0 and ~B0 are not real, we can write 〈~S〉 in terms of the complex ~E and

~B fields as

〈~S〉 = 1

8π
~E × ~B∗ =

1

8π
~n ~E · ~E∗ , (6.50)

and so we have

〈~S〉 = ~n 〈W 〉 . (6.51)

6.3 Motion of a point charge in a linearly-polarised E.M. wave

Consider a plane wave propagating in the z direction, with

~E = (E0 cosω(z − t), 0, 0) , ~B = (0, E0 cosω(z − t), 0) . (6.52)

Suppose now that there is a particle of mass m and charge e in this field. By the Lorentz

force equation we shall have
d~p

dt
= e ~E + e~v × ~B . (6.53)

For simplicity, we shall make the assumption that the motion of the particle can be treated

non-relativistically, and so

~p = m~v = m
d~r

dt
. (6.54)

Let us suppose that the particle is initially located at the point z = 0, and that it moves

only by a small amount in comparison to the wavelength 2π/ω of the electromagnetic

wave. Therefore, to a good approximation, we can assume that the particle is sitting in

the uniform, although time-dependent, electromagnetic field obtained by setting z = 0 in

(6.52). Thus

~E = (E0 cosωt, 0, 0) , ~B = (0, E0 cosωt, 0) , (6.55)

and so the Lorentz force equation gives

mẍ = eE0 cosωt− eżE0 cosωt ≈ eE0 cosωt ,

mÿ = 0 ,

mz̈ = eẋ E0 cosωt . (6.56)

Note that the approximation in the first line follows from our assumption that the motion

of the particle is non-relativistic, so |ż| << 1.
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With convenient and inessential choices for the constants of integration, first obtain

ẋ =
eE0

mω
sinωt , x = − eE0

mω2
cosωt , (6.57)

Substituting into the z equation then gives

z̈ =
e2E2

0

m2ω
sinωt cosωt =

e2E2
0

2m2ω
sin 2ωt , (6.58)

which integrates to give (dropping inessential constants of integration)

z = − e2E2
0

8m2ω3
sin 2ωt . (6.59)

The motion in the y direction is purely linear, and since we are not interested in the case

where the particle drifts uniformly through space, we can just focus on the solution where

y is constant, say y = 0.

Thus the interesting motion of the particle in the electromagnetic field is of the form

x = α cosωt , z = β sin 2ωt = 2β sinωt cosωt , (6.60)

where

α = − eE0

mω2
, β = − e2E2

0

8m2ω3
. (6.61)

Thus we find

z =
2β

α
x

√

1− x2

α2
. (6.62)

This describes a “figure of eight” lying on its side in the (x, z) plane. The assumptions we

made in deriving this, namely non-relativistic motion and a small z displacement relative

to the wavelength of the electromagnetic wave, can be seen to be satisfied provided the

amplitude E0 of the wave is sufficiently small. Note that the displacement in the z direction

is small compared with the displacement in the x direction, since the dimensionless ratio

2β/α is given by
2β

α
=

eE0

4mω
, (6.63)

and we see from the expression for ẋ in (6.57) that this ratio is small since ẋ is assumed

small compared to the speed of light (i.e. 1).

The response of the charge particle to electromagnetic wave provides a model for how

the electrons in a receiving antenna behave in the presence of an electromagnetic wave.

This shows how the wave is converted into oscilliatory currents in the antenna, which are

then amplified and processed into the final output signal in a radio receiver.
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6.4 Circular and elliptical polarisation

The electromagnetic wave described in section 6.2 is linearly polarised. For example, we

could consider the solution with

~E0 = (0, E0, 0) , ~B0 = (0, 0, B0) , ~n = (1, 0, 0) . (6.64)

This corresponds to a linearly polarised electromagnetic wave propagating along the x

direction.

By taking a linear superposition of waves propagating along a given direction ~n, we can

obtain circularly polarised, or more generally, elliptically polarised, waves. Let ~e and ~f be

two orthogonal unit vectors, that are also both orthogonal to ~n:

~e · ~e = 1 , ~f · ~f = 1 , ~n · ~n = 1 ,

~e · ~f = 0 , ~n · ~e = 0 , ~n · ~f = 0 . (6.65)

Suppose now we consider a plane wave given by

~E = (E0 ~e+ Ẽ0
~f) ei (

~k·~r−ωt) , ~B = ~n× ~E , (6.66)

where E0 and Ẽ0 are complex constants. If E0 and Ẽ0 both have the same phase (i.e. Ẽ0/E0

is real), then we again have a linearly-polarised electromagnetic wave. If instead the phases

of E0 and Ẽ0 are different, then the wave is in general elliptically polarised.

Consider as an example the case where

Ẽ0 = ±iE0 , (6.67)

(with E0 taken to be real, without loss of generality), for which the electric field will be

given by

~E = E0(~e± i ~f) ei (
~k·~r−ωt) . (6.68)

Taking the real part, to get the physical electric field, we obtain

~E = E0~e cos(~k · ~r − ωt)∓ E0
~f sin(~k · ~r − ωt) . (6.69)

For example, if we choose

~n = (0, 0, 1) , ~e = (1, 0, 0) , ~f = (0, 1, 0) , (6.70)

then the electric field is given by

Ex = E0 cosω(z − t) , Ey = ∓E0 sinω(z − t) . (6.71)
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It is clear from this that the magnitude of the electric field is constant,

| ~E| = E0 . (6.72)

If we fix a value of z, then the ~E vector can be seen to be rotating around the z axis (the

direction of motion of the wave). This rotation is anticlockwise in the (x, y) plane if we

choose the plus sign in (6.67), and clockwise if we choose the minus sign instead. These

two choices correspond to having a circularly polarised wave of positive or negative helicity

respectively. (Positive helicity means the rotation is parallel to the direction of propagation,

while negative helicity means the rotation is anti-parallel to the direction of propagation.)

In more general cases, where the magnitudes of E0 and Ẽ0 are unequal, or where the

phase angle between them is not equal to 0 (linear polarisation) or 90 degrees, the elec-

tromagnetic wave will be elliptically polarised. Consider, for example, the case where the

electric field is given by

~E = (a1e
i δ1 , a2e

i δ2 , 0) ei ω(z−t) , (6.73)

with the propagtion direction being ~n = (0, 0, 1). Then we shall have

~B = ~n× ~E = (−a2ei δ2 , a1ei δ1 , 0) ei ω(z−t) . (6.74)

The real constants a1, a2, δ1 and δ2 determine the nature of this plane wave propagating

along the z direction. Of course the overall phase is unimportant, so really it is only the

difference δ2 − δ1 between the phase angles that is important.

The magnitude and phase information is sometimes expressed in terms of the Stokes

Parameters (s0, s1, s2, s3), which are defined by

s0 = ExE
∗
x + EyE

∗
y = a21 + a22 , s1 = ExE

∗
x − EyE

∗
y = a21 − a22 , (6.75)

s2 = 2ℜ(E∗
xEy) = 2a1a2 cos(δ2 − δ1) , s3 = 2ℑ(E∗

xEy) = 2a1a2 sin(δ2 − δ1) .

(The last two involve the real and imaginary parts of (E∗
xEy) respectively.) The four Stokes

parameters are not independent:

s20 = s21 + s22 + s23 . (6.76)

The parameter s0 characterises the intensity of the electromagnetic wave, while s1 charac-

terises the amount of x polarisation versus y polarisation, with

−s0 ≤ s1 ≤ s0 . (6.77)

93



The third independent parameter, which could be taken to be s2, characterises the phase

difference between the x and the y polarised waves. Circular polaristion with ± helicity

corresponds to

s1 = 0 , s2 = 0 , s3 = ±s0 . (6.78)

6.5 General superposition of plane waves

So far in the discussion of electromagnetic waves, we have considered the case where there is

a single direction of propagation (i.e. a plane wave), and a single frequency (monochromatic).

The most general wave-like solutions of the Maxwell equations can be expressed as linear

combinations of these basic monochromatic plane-wave solutions.

In order to discuss the general wave solutions, it is helpful to work with the gauge

potential Aµ = (φ, ~A). Recall that we have the freedom to make gauge transformations

Aµ → Aµ + ∂µλ, where λ is an arbitrary function. For the present purposes, of describing

wave solutions, a convenient choice of gauge is to set φ = 0. Such a gauge choice would not

be convenient when discussing solutions in electrostatics, but in the present case, where we

know that the wave solutions are necessarily time-dependent, it is quite helpful. It is know

as the Radiation Gauge.

Thus, we shall first write a single monochromatic plane wave in terms of the 3-vector

potential, as

~A = a~e ei (
~k·~r−ωt) , (6.79)

where ~e is a unit polarisation vector, and a is a constant. As usual, we must have |~k|2 = ω2.

The electric and magnetic fields will be given by

~E = −~∇φ− ∂ ~A

∂t
= i aω ~e ei (

~k·~r−ωt) ,

~B = ~∇× ~A = i a~k × ~e ei (
~k·~r−ωt) =

~k × ~E

ω
. (6.80)

We can immediately see that ~E and ~B satisfy the wave equation, and that we must impose

~e · ~k = 0 in order to satisfy ~∇ · ~E = 0.

We have established, therefore, that (6.79) describes a monochromatic plane wave prop-

agating along the ~k direction, with electric field along ~e, provided that ~e ·~k = 0 and |~k| = ω.

More precisely, the gauge potential that gives the physical (i.e. real) electric and magnetic

fields is given by taking the real part of ~A in (6.79). Thus, when we want to describe the

actual physical quantities, we shall write

~A = a~e ei (
~k·~r−ωt) + a∗~e e−i (~k·~r−ωt) . (6.81)
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(We have absorbed a factor of 1
2 here into a rescaling of a, in order to avoid carrying 1

2

factors around in all the subsequent equations.) For brevity, we shall usually write the

“physical” ~A as

~A = a~e ei (
~k·~r−ωt) + c.c. , (6.82)

where c.c stands for “complex conjugate.”

Now consider a general linear superposition of monochromatic plane waves, with differ-

ent wave-vectors ~k, different polarisation vectors ~e, and different amplitudes a. We shall

therefore label the polarisation vectors and amplitudes as follows:

~e −→ ~eλ(~k) , a −→ aλ(~k) . (6.83)

Here λ is an index which ranges over the values 1 and 2, which labels 2 real orthonormal

vectors ~e1(~k) and ~e2(~k) that span the 2-plane perpendicular to ~k. The general wave solution

can then be written as the sum over all such monochromatic plane waves of the form (6.82).

Since a continuous range of wave-vectors is allowed, the summation over these will be a

3-dimensional integral. Thus we can write

~A =
2∑

λ=1

∫
d3~k

(2π)3

[
~eλ(~k) aλ(~k) e

i (~k·~r−ωt) + c.c.
]
, (6.84)

where ω = |~k|, and
~k · ~eλ(~k) = 0 , ~eλ(~k) · ~eλ′(~k) = δλλ′ . (6.85)

For many purposes, it will be convenient to expand ~A in a basis of circularly-polarised

monochromatic plane waves, rather than linearly-polarised waves. In this case, we should

choose the 2-dimensional basis of polarisation vectors ~ǫ±, related to the previous basis by

~ǫ± =
1√
2
(~e1 ± i~e2) . (6.86)

Since we have ~ei · ~ej = δij , it follows that

~ǫ+ · ~ǫ+ = 0 , ~ǫ− · ~ǫ− = 0 , ~ǫ+ · ~ǫ− = 1 . (6.87)

Note that ~ǫ± ∗ = ~ǫ∓. We can label the ~ǫ± basis vectors by ~ǫλ, where λ is now understood

to take the two “values” + and −. We then write the general wave solution as

~A =
∑

λ=±

∫
d3~k

(2π)3

[
~ǫλ(~k) aλ(~k) e

i (~k·~r−ωt) + c.c.
]
, (6.88)

Of course, we also have ~k · ~ǫλ = 0, and ω = |~k|.
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6.5.1 Helicity and energy of circularly-polarised waves

The angular-momentum tensor Mµν for the electromagnetic field is defined by

Mµν =

∫

t=const
(xµT νρ − xνT µρ)dΣρ , (6.89)

and so the three-dimensional components M ij are

M ij =

∫

t=const
(xiT jρ − xjT iρ)dΣρ =

∫
(xiT j0 − xjT i0)d3x ,

=

∫
(xiSj − xjSi)d3x . (6.90)

Thus, since ~S = ( ~E × ~B)/(4π), the three-dimensional angular momentum Li =
1
2ǫijkM

jk is

given by

Li =

∫
ǫijkx

jSk d3x , (6.91)

i.e.

~L =
1

4π

∫
~r × ( ~E × ~B) d3x . (6.92)

Now, since ~B = ~∇× ~A, we have

[~r × ( ~E × ~B)]i = ǫijkǫkℓm xjEℓBm ,

= ǫijkǫkℓmǫmpq xjEℓ∂pAq ,

= ǫijk(δkpδℓq − δkqδℓp)xjEℓ∂pAq ,

= ǫijk xjEℓ∂kAℓ − ǫijk xjEℓ∂ℓAk , (6.93)

and so

Li =
1

4π

∫
(ǫijk xjEℓ∂kAℓ − ǫijk xjEℓ∂ℓAk)d

3x ,

=
1

4π

∫ (
− ǫijk ∂k(xjEℓ)Aℓ + ∂ℓ(xjEℓ)Ak

)
d3x ,

=
1

4π

∫ (
− ǫijk xj(∂kEℓ)Aℓ + ǫijk EjAk

)
d3x . (6.94)

Note that in performing the integrations by parts here, we have, as usual, assumed that

the fields fall off fast enough at infinity that the surface term can be dropped. We have

also used the source-free Maxwell equation ∂ℓEℓ = 0 in getting to the final line. Thus, we

conclude that the angular momentum 3-vector can be expressed as

~L =
1

4π

∫
( ~E × ~A−Ai (~r × ~∇)Ei)d

3x . (6.95)

The two terms in (6.95) can be interpreted as follows. The second term can be viewed

as an “orbital angular momentum,” since it clearly depends on the choice of origin. It is
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rather analogous to an ~r×~p contribution to the angular momentum of a system of particles.

On the other hand, the first term in (6.95) can be viewed as an “intrinsic spin” term, since

it is constructed purely from the electromagnetic fields themselves, and is independent of

the choice of origin. We shall calculate this spin contribution,

~Lspin =
1

4π

∫
~E × ~A d3x (6.96)

to the angular momentum in the case of the sum over circularly-polarised waves that we

introduced in the previous section. Recall that for this sum, the 3-vector potential is given

by

~A =
∑

λ′=±

∫
d3~k ′

(2π)3

[
~ǫλ′(~k

′) aλ′(~k
′) ei (

~k ′·~r−ω′t) + c.c.
]
, (6.97)

The electric field is then given by

~E = −∂
~A

∂t
=
∑

λ=±

∫
d3~k

(2π)3

[
iω~ǫλ(~k) aλ(~k) e

i (~k·~r−ωt) + c.c.
]
, (6.98)

Note that we have put primes on the summation and integration variables λ and ~k in the

expression for ~A. This is so that we can take the product ~E × ~A and not have a clash

of “dummy” summation variables, in what will follow below. We have also written the

frequency as ω′ ≡ |~k ′| in the expression for ~A.

Our interest will be to calculate the time average

〈~Lspin〉 ≡
1

T

∫ T

0

~Lspindt . (6.99)

Since we are considering a wave solution with an entire “chorus” of frequencies now, we

define the time average by taking T to infinity. (It is easily seen that this coincides with

the previous definition of the time average for a monochromatic wave of frequency ω, where

T was taken to be 2π/ω.) Note that the time average will be zero for any quantity whose

time dependence is of the oscilliatory form ei νt, because we would have

1

T

∫ T

0
ei νtdt =

1

i νT
(ei νT − 1) , (6.100)

which clearly goes to zero as T goes to infinity. Since the time dependence of all the

quantities we shall consider is precisely of the form eiνt, it follows that in order to survive

the time averaging, it must be that ν = 0. Thus we have 〈ei νt〉 = 0 if ν 6= 0 and 〈ei νt〉 = 1

if ν = 0.

We are interested in calculating the time average of ~E × ~A, where ~A and ~E are given

by (6.97) and (6.98). The quantities ω appearing there are, by definition, positive, since
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we have defined ω ≡ |~k|. The only way that we shall get terms in ~E × ~A that have zero

frequency (i.e. ν = 0) is from the product of one of the terms that is explicitly written times

one of the “c.c.” terms, since these, of course, have the opposite sign for their frequency

dependence.

The upshot of this discussion is that when we evaluate the time average of ~E × ~A, with

~A and ~E given by (6.97) and (6.98), the only terms that survive will be coming from the

product of the explicitly-written term for ~E times the “c.c.” term for ~A, plus the “c.c.”

term for ~E times the explicitly-written term for ~A. Furthermore, in order for the products

to have zero frequency, and therefore survive the time averaging, it must be that ω′ = ω.

We therefore find

〈 ~E × ~A〉 =
∑

λλ′

∫
d3~k

(2π)3
d3~k ′

(2π)3
iω
[
~ǫλ(~k)× ~ǫ ∗λ′(~k ′)aλ(~k)a

∗
λ′(
~k ′) ei(

~k−~k ′)·~r

−~ǫ ∗λ(~k)× ~ǫλ′(~k ′)a∗λ(~k)aλ′(~k
′) e−i(~k−~k ′)·~r

]
.(6.101)

We now need to integrate 〈 ~E × ~A〉 over all 3-space, which we shall write as

∫
〈 ~E × ~A〉 d3~r . (6.102)

We now make use of the result from the theory of delta functions that

∫
ei(
~k−~k ′)·~r d3~r = (2π)3 δ3(~k − ~k ′) . (6.103)

Therefore, from (6.101) we find

∫
〈 ~E × ~A〉 d3~r =

∑

λλ′

∫
d3~k

(2π)3
iω
[
~ǫλ(~k)× ~ǫ ∗λ′(~k)aλ(~k)a∗λ′(~k)

−~ǫ ∗λ(~k)× ~ǫλ′(~k)a∗λ(~k)aλ′(~k)
]
. (6.104)

Finally, we recall that the polarization vectors ~ǫ±(~k) span the 2-dimensional space or-

thogonal to the wave-vector ~k. In terms of the original real basis unit vectors ~e1(~k) and

~e2(~k) we have

~e1(~k)× ~e2(~k) =
~k

ω
, (6.105)

and so it follows from (6.86) that

~ǫ+(~k)× ~ǫ ∗+(~k) = − i~k

ω
, ~ǫ−(~k)× ~ǫ ∗−(~k) =

i~k

ω
. (6.106)

From this, it follows that (6.104) becomes

∫
〈 ~E × ~A〉 d3~r = 2

∫
d3~k

(2π)3
~k [a+(~k)a

∗
+(
~k)− a−(~k)a

∗
−(~k)] , (6.107)
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and so we have

〈~Lspin〉 =
1

2π

∫
d3~k

(2π)3
~k
(
|a+(~k)|2 − |a−(~k)|2

)
. (6.108)

It can be seen from this result that the modes associated with the coefficients a+(~k)

correspond to circularly-polarised waves of positive helicity; i.e. their spin is parallel to

the wave-vector ~k. Conversely, the modes with coefficients a−(~k) correspond to circularly-

polarised waves of negative helicity; i.e. with spin that is anti-parallel to the wave-vector

~k.

In a similar fashion, we may evaluate the energy of the general wave solution as a sum

over the individual modes. The total energy E is given by21

E =
1

8π

∫
(E2 +B2)d3x −→ 1

4π

∫
E2d3x . (6.109)

Since ~E = −∂ ~A/∂t here, we have

〈E2〉 =
∑

λ,λ′

∫
d3~k

(2π)3
d3~k ′

(2π)3
ω2
[
~ǫλ(~k) · ~ǫ ∗λ′(~k ′) aλ(~k)a

∗
λ′(
~k ′) ei (

~k−~k ′)·~r

+~ǫ ∗λ(~k) · ~ǫλ′(~k ′) a∗λ(~k)aλ′(~k
′) e−i (~k−~k ′)·~r

]
, (6.110)

where again, the time-averaging has picked out only the terms whose total frequency adds

to zero. The integration over all space then again gives a three-dimensional delta function

δ3(~k − ~k ′), and so we find

∫
〈E2〉d3~r =

∑

λ,λ′

∫
d3~k

(2π)3
ω2
[
~ǫλ(~k) · ~ǫ ∗λ′(~k) aλ(~k)a∗λ′(~k)

+~ǫ ∗λ(~k) · ~ǫλ′(~k) a∗λ(~k)aλ′(~k)
]
, (6.111)

Finally, using the orthogonality relations (6.87), and the conjugation identity ~ǫ± = ~ǫ ∗∓, we

obtain

〈E〉 = 1

2π

∫
d3~k

(2π)3
ω2
(
|a+(~k)|2 + |a−(~k)|2

)
. (6.112)

21We are being a little bit sloppy here, in invoking the result, shown earlier for a single monochromatic

plane wave, that the electric and magnetic fields give equal contributions to the energy. It is certainly not

true any longer that ~E2 = ~B2 for a general superposition of plane waves. However, after integrating over

all space and performing a time averaging, as we shall do below, the contribution of the electric field to the

final result will just be a sum over the contributions of all the individual modes. Likewise, the contribution

of the magnetic field will be a sum over all the individual modes. It is now true that the electric and

magnetic contributions of each mode will be equal, and so one does indeed get the correct answer by simply

doubling the result for the electric field alone. Any reader who has doubts about this is invited to perform

the somewhat more complicated direct calculation of the contribution from the magnetic field, to confirm

that it is true.
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From the two results (6.108) and (6.112), we see that for a given mode characterised by

helicity λ and wave-vector ~k, we have

〈~Lspin〉~k,λ =
1

2π
~k |aλ(~k)|2 (sign λ) ,

〈E〉~k,λ =
1

2π
ω2 |aλ(~k)|2 , (6.113)

where (sign λ) is +1 for λ = + and −1 for λ = −. The helicity σ, which is the component

of spin along the direction of the wave-vector ~k, is therefore given by

σ =
1

2π
|~k| |aλ(~k)|2 (sign λ) ,

=
1

2π
ω |aλ(~k)|2 (sign λ) ,

=
1

ω
〈E〉~k,λ (sign λ) . (6.114)

In other words, we have that

energy = ±(helicity)ω , (6.115)

and so we can write

E = |σ|ω . (6.116)

This can be compared with the result in quantum mechanics, that

E = h̄ ω . (6.117)

Planck’s constant h̄ has the units of angular momentum, and in fact the basic “unit” of

angular momentum for the photon is one unit of h̄. In the transition from classical to

quantum physics, the helicity of the electromagnetic field becomes the spin of the photon.

6.6 Gauge invariance and electromagnetic fields

In the previous discussion, we described electromagnetic waves in terms of the gauge po-

tential Aµ = (−φ, ~A), working in the gauge where φ = 0, i.e. A0 = 0. Since the gauge

symmetry of Maxwell’s equations is

Aµ −→ Aµ + ∂µλ , (6.118)

one might think that all the gauge freedom had been used up when we imposed the condition

φ = 0, on the grounds that one arbitrary function (the gauge parameter λ) has been used

in order to set one function (the scalar potential φ) to zero. This is, in fact, not the case.
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To see this, recall that for the electromagnetic wave we wrote ~A as a superposition of terms

of the form

~A = ~c ei (
~k·~r−ωt) , (6.119)

which implied that

~E = −∂
~A

∂t
= iω~c ei (

~k·~r−ωt) . (6.120)

From this we have

~∇ · ~E = −ω~k · ~c ei (~k·~r−ωt) , (6.121)

and so the Maxwell equation ~∇ · ~E = 0 implies that ~k · ~c = 0, and hence

~k · ~A = 0 . (6.122)

This means that as well as having A0 = −φ = 0, we also have a component of ~A vanishing,

namely the projection along ~k.

To see how this can happen, it is helpful to go back to a Lorentz-covariant gauge choice

instead. First, consider the Maxwell field equation, in the absence of source currents:

∂µFµν = 0 . (6.123)

Since Fµν = ∂µAν − ∂νAµ, this implies

∂µ∂µAν − ∂µ∂νAµ = 0 . (6.124)

We now choose the Lorenz gauge condition,

∂µAµ = 0 . (6.125)

The field equation (6.124) then reduces to

∂µ∂µAν = 0 , i.e. Aµ = 0 . (6.126)

One might again think that all the gauge symmetry had been “used up” in imposing the

Lorenz gauge condition (6.125), on the grounds that the arbitrary function λ in the gauge

transformation

Aµ −→ Aµ + ∂µλ (6.127)

that allowed one to impose (6.125) would no longer allow any freedom to impose further

conditions on Aµ. This is not quite true, however.
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To see this, let us suppose we are already in Lorenz gauge, and then try performing a

further gauge transformation, as in (6.127), insisting that we must remain in the Lorenz

gauge. This means that λ should satisfy

∂µ∂µλ = 0 , i.e. λ = 0 . (6.128)

Non-trivial such functions λ can of course exist; any solution of the wave equation will work.

To see what this implies, let us begin with a general solution of the wave equation

(6.126), working in the Lorenz gauge (6.125). We can decompose this solution as a sum

over plane waves, where a typical mode in the sum is

Aµ = aµ e
i (~k·~r−ωt) = aµ e

i kνxν = aµ e
i k·x , (6.129)

where aµ and kν are constant. Substituting into the wave equation (6.126) we find

0 = Aµ = ∂σ∂σ(aµ e
i kνxν ) = −kσkσ aµ ei kνx

ν
, (6.130)

whilst the Lorenz gauge condition (6.125) implies

0 = ∂µAµ = ∂µ(aµ e
i kνxν ) = i kµaµ e

i kνxν . (6.131)

In other words, kµ and aµ must satisfy

kµkµ = 0 , kµaµ = 0 . (6.132)

The first of these equations implies that kµ is a null vector, as we had seen earlier. The sec-

ond equation implies that 1 of the 4 independent components that a 4-vector aµ generically

has is restricted in this case, so that aµ has only 3 independent components.

Now we perform the further gauge transformation Aµ → Aµ + ∂µλ, where, as discussed

above, λ = 0 so that we keep the gauge-transformed Aµ in Lorenz gauge. Specifically, we

shall choose

λ = ih ei kνx
ν
, (6.133)

where h is a constant. Thus we shall have

Aµ −→ Aµ − hkµ e
i kνxν . (6.134)

With Aµ given by (6.129) this means we shall have

aµ e
i kνxν −→ aµ e

i kνxν − hkµ e
i kνxν , (6.135)
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which implies

aµ −→ aµ − hkµ . (6.136)

As a check, we can see that the redefined aµ indeed still satisfies kµaµ = 0, as it should,

since kµ is a null vector.

The upshot of this discussion is that the freedom to take the constant h to be anything we

like allows us to place a second restriction on the components of aµ. Thus not merely are its

ostensible 4 components reduced to 3 by virtue of kµaµ = 0, but a further component can be

eliminated by means of the residual gauge freedom, leaving just 2 independent components

in the polarisation vector aµ. Since the physical degrees of freedom are, by definition, the

independent quantities that cannot be changed by making gauge transformations, we see

that there are 2 degrees of freedom in the electromagnetic wave, and not 3 as one might

naively have supposed.

These 2 physical degrees of freedom can be organised as the + and − helicity states,

just as we did in our earlier discussion. These are the circularly-polarised waves rotating

anti-clockwise and clockwise, respectively. In other words, these are the states whose spin is

eiether parallel, or anti-parallel, to the direction of propagation. One way of understanding

why we have only 2, and not 3, allowed states is that the wave is travelling at the speed of

light, and so it is not possible for it to have a helicity that projects other than fully parallel

or anti-parallel to its direction of propagation.

We can make contact with the φ = 0 gauge choice that we made in our previous

discussion of electromagnetic waves. Starting in Lorenz gauge, we make use of the residual

gauge transformation (6.136) by choosing h so that

a0 − hk0 = 0 , i.e. h = −a0
ω
. (6.137)

this means that after performing the residual gauge transformation we shall have

a0 = 0 , (6.138)

and so, from (6.129), we shall have

A0 = 0 , i.e. φ = 0 . (6.139)

The original Lorenz gauge condition (6.125) then reduces to

∂iAi = 0 , i.e. ~∇ · ~A = 0 . (6.140)
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This implies ~k · ~A = 0, and so we have reproduced precisely the φ = 0, ~k · ~A = 0 gauge

conditions that we used previously in our analysis of the general electromagnetic wave

solutions. The choice φ = 0 amd ~∇ · ~A = 0 is known as Radiation Gauge.

In D spacetime dimensions, the analogous result can easily be seen to be that the

electromagnetic wave has (D − 2) degrees of freedom.

6.7 Fourier decomposition of electrostatic fields

We saw earlier in 6.5 that an electromagnetic wave, expressed in the radiation gauge in

terms of the 3-vector potential ~A, could be decomposed into Fourier modes as in (6.88).

For each mode ~A
(~k,λ)

in the sum, we have ~ǫλ(~k) · ~k = 0, and so each mode of the electric

field ~E
(~k,λ)

= −∂ ~A
(~k,λ)

/∂t satisfies the transversality condition

~k · ~E
(~k,λ)

= 0 . (6.141)

By constrast, an electrostatic field ~E is longitudinal. Consider, for example, a point

charge at the origin, whose potential therefore satisfies

∇2φ = −4πe δ3(~r) . (6.142)

We can express φ(~r) in terms of its Fourier transform Φ(~k) as

φ(~r) =

∫
d3~k

(2π)3
Φ(~k) ei

~k·~r . (6.143)

This is clearly a sum over zero-frequency waves, as one would expect since the fields are

static.

It follows from (6.143) that

∇2φ(~r) = −
∫

d3~k

(2π)3
~k 2 Φ(~k) ei

~k·~r . (6.144)

We also note that the delta-function in (6.142) can be written as

δ3(~r) =

∫
d3~k

(2π)3
ei
~k·~r . (6.145)

It follows that if we substitute (6.143) into (6.142) we shall obtain −~k 2Φ(~k) = −4πe, and

hence

Φ(~k) =
4πe

k2
. (6.146)

The electric field is given by ~E = −~∇φ, and so

~E = −i

∫
d3~k

(2π)3
~kΦ(~k) ei

~k·~r . (6.147)
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If we define ~G(~k) to be the Fourier transform of ~E, so that

~E(~r) =

∫
d3~k

(2π)3
~G(~k) ei

~k·~r , (6.148)

then we see that

~G(~k) = −i~kΦ(~k) = −4π i e

k2
~k . (6.149)

Thus we see that ~G(~k) is parallel to ~k, which proves that the electrostatic field is Longitu-

dinal.

6.8 Waveguides

For our purposes, we shall define a waveguide to be a hollow, perfectly conducting, cylinder,

essentially of infinite length. For convenience we shall take the axis of the cylinder to lie

along the z direction. The cross-section of the cylinder, in the (x, y) plane, can for now be

arbitrary, but it is the same for all values of z. Thus, the cross-section through the cylinder

is a closed curve.

We shall consider an electromagnetic wave propagting down the cylinder, with angular

frequency ω. It will therefore have z and t dependence of the form

ei (kz−ωt) . (6.150)

Note that k and ω will not in general be equal; i.e. , the wave will not propagate at the

speed of light. Note that with all fields having z and t dependence of the form (6.150), we

may make the replacements

∂

∂t
−→ −iω ,

∂

∂z
−→ i k . (6.151)

The source-free Maxwell equations (which hold inside the waveguide), therefore imply

~∇ · ~E = 0 , ~∇× ~E = iω ~B ,

~∇ · ~B = 0 , ~∇× ~B = −iω ~E . (6.152)

Because of the assumed form of the z dependence in (6.150), we may write

~E(x, y, z, t) = ~E(x, y) ei (kz−ωt) , ~B(x, y, z, t) = ~B(x, y) ei (kz−ωt) . (6.153)

It is convenient also to define the unit vector ~m in the z direction (the axis of the

waveguide),

~m = (0, 0, 1) , (6.154)
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and certain transverse quantities, denoted with a ⊥ subscript, as follows:

~∇⊥ ≡
( ∂
∂x
,
∂

∂y
, 0
)
,

~E ≡ ~E⊥ + ~mEz , ~B ≡ ~B⊥ + ~mBz . (6.155)

(Note that therefore ~E⊥ = (Ex, Ey, 0) and ~B⊥ = (Bx, By, 0).) From (6.152), the Maxwell

equations become

~∇⊥ · ~E⊥ = −i k Ez ,

~∇⊥ · ~B⊥ = −i k Bz ,

i k ~E⊥ + iω ~m× ~B⊥ = ~∇⊥Ez ,

~m · (~∇⊥ × ~E⊥) = iω Bz ,

i k ~B⊥ − iω ~m× ~E⊥ = ~∇⊥Bz ,

~m · (~∇⊥ × ~B⊥) = −iω Ez . (6.156)

Note that the cross product of any pair of transverse vectors, ~U⊥ × ~V⊥, lies purely in the z

direction, i.e. parallel to ~m. In components, the last four lines in (6.156) are:

i kEx − iωBy = ∂xEz , i kEy + iωBx = ∂yEz ,

∂xEy − ∂yEx = iωBz ,

i kBx + iωEy = ∂xBz , i kBy − iωEx = ∂yBz ,

∂xBy − ∂yBx = −iωEz , (6.157)

where ∂x = ∂/∂x and ∂y = ∂/∂y.

6.8.1 TEM modes

There are various types of modes that can be considered. First, we may dispose of an

“uninteresting” possibility, called TEM modes. The acronym stands for “transverse electric

and magnetic,” meaning that

Ez = 0 , Bz = 0 . (6.158)

From the equations in (6.156) for ~E⊥, we see that

~∇⊥ · ~E⊥ = 0 , ~∇⊥ × ~E⊥ = 0 . (6.159)

These are the equations for electrostatics in the 2-dimensional (x, y) plane. The second

equation implies we can write ~E⊥ = −~∇⊥φ, and then the first equation implies that the
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electrostatic potential φ satisfies the 2-dimensional Laplace equation

∇2
⊥φ =

∂2φ

∂x2
+
∂2φ

∂y2
= 0 . (6.160)

Since the cross-section of the waveguide in the (x, y) plane is a closed curve, at a fixed

potential (since it is a conductor), we can deduce that φ is constant everywhere inside the

conductor:

0 =

∫
dxdy φ∇2

⊥φ = −
∫
dxdy |~∇⊥φ|2 , (6.161)

which implies ~∇⊥φ = 0 inside the waveguide, and hence φ = constant and so ~E = 0.

Similar considerations imply ~B = 0 for the TEM mode also.22

6.8.2 TE and TM modes

In order to have non-trivial modes propagating in the waveguide, we must relax the TEM

assumption. There are two basic types of non-trivial modes we may consider, where either

~E or ~B (but not both) are taken to be transverse. These are called TE modes and TM

modes respectively. A general electromagnetic wave propagating in a waveguide can be

decomposed as a sum of such modes.

To analyse these modes, we first need to consider the boundary conditions at the con-

ducting surface of the cylinder. The component of ~E parallel to the surface must vanish

(seen by integrating ~E around a loop comprising a line segment just inside the waveguide,

and closed by a line segment just inside the conductor, where ~E = 0 by definition). Then, if

we define ~n to be the unit normal vector at the surface, we may say that ~n× ~E = 0. Next,

taking the scalar product of ~n with the ~∇× ~E = iω ~B Maxwell equation, we get

iω ~n · ~B = ~n · (~∇× ~E) = −~∇ · (~n× ~E) = 0 . (6.162)

Thus, we have

~n× ~E = 0 , ~n · ~B = 0 (6.163)

on the surface of the waveguide. We may restate these boundary conditions as

Ez
∣∣∣
S
= 0 , ~n · ~B⊥

∣∣∣
S
= 0 , (6.164)

where S denotes the surface of the cylindrical waveguide.

The two boundary conditions above imply also that

~n · ~∇⊥Bz
∣∣∣
S
= 0 . (6.165)

22If the waveguide were replaced by coaxial conducting cylinders then TEM modes could exist in the gap

between the innner and outer cylinder, since the potentials on the two cylinder need not be equal.
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This follows by taking the scalar product of ~n with the penultimate equation in (6.156):

~n · ~∇⊥Bz = i k ~n · ~B⊥ − iω~n · (~m× ~E⊥) ,

= i k ~n · ~B⊥ + iω~m · (~n× ~E⊥) , (6.166)

and then restricting to the surface S of the cylinder. The condition (6.165) may be rewritten

as
∂Bz
∂n

∣∣∣
S
= 0 , (6.167)

where ∂/∂n ≡ ~n · ~∇ is the normal derivative.

With the assumption (6.150), the wave equations for ~E and ~B (i.e. (∇2 − ∂2/∂t2) ~E = 0

and (∇2 − ∂2/∂t2) ~B = 0) become

∇2
⊥ ~E + (ω2 − k2) ~E = 0 , ∇2

⊥ ~B + (ω2 − k2) ~B = 0 , (6.168)

where ∇2
⊥ = ∂2/∂x2+∂2/∂y2 is the 2-dimensional Laplacian. The four equations appearing

in the first and third lines of (6.157) can be solved for Ex, Ey, Bx and By in terms of Ez

and Bz, giving

Ex =
i

ω2 − k2
(ω ∂yBz + k ∂xEz) ,

Ey =
i

ω2 − k2
(−ω ∂xBz + k ∂yEz) ,

Bx =
i

ω2 − k2
(−ω ∂yEz + k ∂xBz) ,

By =
i

ω2 − k2
(ω ∂xEz + k ∂yBz) . (6.169)

This means that we can concentrate on solving for Ez and Bz, which must satisfy (see

(6.168))

∇2
⊥Ez + (ω2 − k2)Ez = 0 ,∇2

⊥Bz + (ω2 − k2)Bz = 0 . (6.170)

Having solved for Ez and Bz, substitution into (6.169) gives the expressions for the remain-

ing field components Ex, Ey, Bx and By.

As mentioned earlier, we can divide the discussion into a consideration of two different

categories of wave solution in the waveguide. These are

TE waves : Ez = 0 , and
∂Bz
∂n

∣∣∣
S
= 0 ,

~B⊥ =
i k

ω2 − k2
~∇Bz , ~E = ~E⊥ = −ω

k
~m× ~B⊥ , (6.171)

TM waves : Bz = 0 , and Ez
∣∣∣
S
= 0 ,

~E⊥ =
i k

ω2 − k2
~∇Ez , ~B = ~B⊥ =

ω

k
~m× ~E⊥ . (6.172)
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Note that the vanishing of Ez or Bz in the two cases means by definition that this field com-

ponent vanishes everywhere inside the waveguide, and not just on the cylindrical conductor.

Note also that the second condition in each case is just the residual content of the boundary

conditions in (6.164) and (6.165), after having imposed the transversality condition Ez = 0

or Bz = 0 respectively. The second line in each of the TE and TM cases gives the results

from (6.169), written now in a slightly more compact way. In each case, the basic wave

solution is given by solving the 2-dimensional Helmholtz equation

∂2ψ

∂x2
+
∂2ψ

∂y2
+Ω2ψ = 0 , (6.173)

where

Ω2 ≡ ω2 − k2 , (6.174)

and ψ is equal to Bz or Ez in the case of TE or TM waves respectively. We also have the

boundary conditions:

TE waves :
∂ψ

∂n

∣∣∣
S
= 0 , ψ = Bz , (6.175)

TM waves : ψ
∣∣∣
S
= 0 , ψ = Ez . (6.176)

Equation (6.173), together with the boundary condition (6.175) or (6.176), defines an

eigenfunction/eigenvalue problem. Since the the cross-section of the waveguide is a closed

loop in the (x, y) plane, the equation (6.173) is to be solved in a compact closed region, and

so the eigenvalue specture for Ω2 will be discrete; there will be a semi-infinite number of

eigenvalues, unbounded above, discretely separated from each other.

Consider, as an example, TM waves propagating down a waveguide with rectangular

cross-section:

0 ≤ x ≤ a , 0 ≤ y ≤ b . (6.177)

For TM waves, we must satisfy the boundary condition that ψ vanishes on the edges of

the rectangle. It follows from an elementary calculation, in which one separates variables

in (6.173) by writing ψ(x, y) = X(x)Y (y), that the eigenfunctions and eigenvalues, labelled

by integers (m,n), are given by23

ψmn = emn sin
(mπx

a

)
sin
(nπy

b

)
, m ≥ 1 , n ≥ 1 ,

Ω2
mn =

m2π2

a2
+
n2π2

b2
. (6.178)

23If we were instead solving for TE modes, we would have the boundary condition ∂ψ/∂n = 0 on the

edges of the rectangle, rather than ψ = 0 on the edges. This would give different eigenfunctions, involving

cosines rather than sines.
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The wave-number k and the angular frequency ω for the (m,n) mode are then related by

k2 = ω2 − Ω2
mn . (6.179)

Notice that this means there is a minimum frequency ω(m,n)min = Ωmn at which a wave

can propagate down the waveguide in the (m,n) mode. If one tried to transmit a lower-

frequency wave in this mode, it would have imaginary wave-number, and so from (6.153) it

would die off exponentially with z. This is called an evanescent wave.

The absolute lowest bound on the angular frequency that can propagate down the

waveguide is clearly given, in this example, by Ω1,1. In other words, the lowest angular

frequency of TM wave that can propagate down the rectangular waveguide is given by

ωmin = π

√
1

a2
+

1

b2
. (6.180)

In view of the relation (6.174) between the angular frequency and the wave-number, we

see that the phase velocity vph and the group velocity vgr are given by

vph ≡ ω

k
=
(
1− Ω2

ω2

)−1/2
,

vgr ≡ dω

dk
=
(
1− Ω2

ω2

)1/2
. (6.181)

Note that because of the particular form of the dispersion relation, i.e. the equation (6.174)

relating ω to k, it is the case here that

vph vgr = 1 . (6.182)

We see that while the group velocity satisfies

vgr ≤ 1 , (6.183)

the phase velocity satisfies

vph ≥ 1 . (6.184)

There is nothing wrong with this, even though it means the phase velocity exceeds the

speed of light, since nothing material, and no signal, is transferred faster than the speed of

light. In fact, as we shall now verify, energy and information travel at the group velocity

vgr, which is always less than or equal to the speed of light.

Note that the group velocity approaches the speed of light (from below) as ω goes

to infinity. To be more precise, the group velocity approaches the speed of light as ω

becomes large compared to the eigenvalue Ω associated with the mode of propagation under
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discussion. An example where this limit is (easily) approached is if you look through a length

of metal drainpipe. Electromagnetic waves in the visible spectrum have a frequency vastly

greater than the lowest TM or TE modes of the drainpipe, and they propagate through the

pipe as if it wasn’t there. The story would be different if one tried to channel waves from

the magnetron in a microwave oven down the drainpipe.

Let us now investigate the flow of energy down the waveguide. This is obtained by

working out the time average of the Poynting flux,

〈~S〉 = 1

8π
~E × ~B ∗ . (6.185)

Note that here the fields ~E and ~B are taken to be complex, and we are using the result

discussed earlier about taking time averages of quadratic products of the physical ~E and ~B

fields.

If we consider TM modes, then we shall have

~E⊥ =
i k

Ω2
~∇ψ , Ez = ψ ,

~B⊥ =
ω

k
~m× ~E⊥ =

iω

Ω2
~m× ~∇ψ , Bz = 0 . (6.186)

(Recall that ~m = (0, 0, 1).) Note that the expressions for ~E and ~B can be condensed down

to

~E =
i k

Ω2
~∇ψ + ~mψ , ~B =

iω

Ω2
~m× ~∇ψ . (6.187)

We therefore have

~E × ~B ∗ =
( i k
Ω2

~∇ψ + ~mψ
)
×
(
− iω

Ω2
~m× ~∇ψ∗

)
. (6.188)

Using the vector identity ~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C, we then find

~E × ~B ∗ =
ωk

Ω4
(~∇ψ · ~∇ψ∗) ~m+

iω

Ω2
ψ ~∇ψ∗ , (6.189)

since ~m · ~∇ψ = 0. Along the z direction (i.e. along ~m), we therefore have

〈~S〉z =
ωk

8πΩ4
(~∇ψ · ~∇ψ∗) =

ωk

8πΩ4
|~∇ψ|2 . (6.190)

(The second term in (6.189) describes the circulation of energy within the cross-sectional

plane of the waveguide. This can be seen from the fact that ~∇ψ(x, y) lies purely in the

(x, y) plane, with no projection along the z direction.)
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The total transmitted power P is obtained by integrating 〈~S〉z over the cross-sectional

area Σ of the waveguide. This gives

P =

∫

Σ
dxdy 〈~S〉z =

ωk

8πΩ4

∫

Σ
dxdy ~∇ψ∗ · ~∇ψ ,

=
ωk

8πΩ4

∫

Σ
dxdy

(
~∇ · (ψ∗ ~∇ψ)− ψ∗ ∇2ψ

)
,

=
ωk

8πΩ4

∮

C
ψ∗ ∂ψ
∂n

dℓ− ωk

8πΩ4

∫

Σ
dxdy ψ∗ ∇2ψ ,

= − ωk

8πΩ4

∫

Σ
dxdy ψ∗ ∇2ψ =

ωk

8πΩ2

∫

Σ
dxdy ψ∗ ψ , (6.191)

and so we have

P =
ωk

8πΩ2

∫

Σ
dxdy |ψ|2 . (6.192)

Note that in (6.191), the boundary term over the closed loop C that forms the boundary of

the waveguide in the (x, y) plane gives zero because ψ vanishes everywhere on the cylinder.

(Recall that we are considering the example of TM modes here.) The remaining term was

then simplified by using (6.173).

We may also work out the total energy per unit length of the waveguide. The total

time-averaged energy density is given by

〈W 〉 =
1

8π
~E · ~E ∗ =

1

8π

( i k
Ω2

~∇ψ + ~mψ
)
·
(
− i k

Ω2
~∇ψ∗ + ~mψ∗

)
,

=
k2

8πΩ4
~∇ψ∗ · ~∇ψ +

1

8π
ψψ∗ . (6.193)

The energy per unit length U is then obtained by integrating 〈W 〉 over the cross-sectional

area, which gives

U =

∫

Σ
dxdy 〈W 〉 = k2

8πΩ4

∫

Σ
dxdy ~∇ψ∗ · ~∇ψ +

1

8π

∫

Σ
dxdy |ψ|2 ,

=
k2

8πΩ2

∫

Σ
dxdy |ψ|2 + 1

8π

∫

Σ
dxdy |ψ|2 , (6.194)

where we have again integrated by parts in the first term, dropped the boundary term

because ψ vanishes on the cylinder, and used (6.173) to simplify the result. Thus we find

U =
ω2

8πΩ2

∫

Σ
dxdy |ψ|2 . (6.195)

Having obtained the expression (6.192) for the power P passing through the waveguide,

and the expression (6.195) for the energy per unit length in the waveguide, we may note

that

P =
k

ω
U =

1

vph
U = vgr U . (6.196)

This demonstrates that the energy flows down the waveguide at the group velocity vgr.
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6.9 Resonant cavities

A resonant cavity is a hollow, closed conducting “container,” inside which is an electromag-

netic field. A simple example would be to take a length of waveguide of the sort we have

considered in section 6.8, and turn it into a closed cavity by attaching conducting plates at

each end of the cylinder. Let us suppose that the length of the cavity is d.

Consider, as an example, TM modes in the cavity. We solve the same 2-dimensional

Helmholtz equation (6.173) as before,

∂2ψ

∂x2
+
∂2ψ

∂y2
+Ω2 ψ = 0 , (6.197)

subject again to the TM boundary condition that ψ must vanish on the surface of the

cyliner. The ~E and ~B fields are given, as before, by

~E⊥ =
i k

Ω2
ei (κz−ωt) ~∇ψ , Ez = ψ ei (κz−ωt) ,

~B⊥ =
ω

k
~m× ~E⊥ , (6.198)

where ~m = (0, 0, 1). Now, however, we have the additional boundary conditions that ~E⊥

must vanish on the two conductiung plates, which we shall take to be at z = 0 and z = d.

This is because the component of ~E parallel to a conductor must vanish at the conducting

surface.

In order to arrange that ~E⊥ vanish, for all t, at z = 0 and z = d, it must be that there

is a superposition of right-moving and left-moving waves. (These correspond to z and t

dependences ei (±κz−ωt) respectively.) Thus we need to take the combination that makes a

standing wave,

~E⊥ = − k

Ω2
sin kz e−iωt ~∇ψ , (6.199)

in order to have ~E⊥ = 0 at z = 0. Furthermore, in order to have also that ~E⊥ = 0 at z = d,

it must be that the wave-number k is now quantised, according to

k =
pπ

d
, (6.200)

where p is an integer. Note that we also have

Ez = ψ cos kz e−iωt . (6.201)

Recall that in the waveguide, we had already found that Ω2 ≡ ω2−k2 was quantised, be-
ing restricted to a semi-infinite discrete set of eigenvalues for the 2-dimensional Helmoholtz
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equation. In the waveguide, that still allowed k and ω to take continuous values, subject to

the constraint (dispersion relation)

ω2 = Ω2 + k2 . (6.202)

In the resonant cavity we now have the further restriction that k is quantised, according to

(6.200). This means that the spectrum of allowed frequencies ω is now discrete, and given

by

ω2 = Ω2 +
p2π2

d2
. (6.203)

If, for example, we consider the previous example of TM modes in a rectangular waveg-

uide whose cross-section has sides of lengths a and b, but now with the added end-caps at

z = 0 and z = d, then Ω2 is given by (6.178), and so the resonant frequencies in the cavity

are given by

ω2 = π2
(m2

a2
+
n2

b2
+
p2

d2

)
, (6.204)

for positive integers (m,n, p).

7 Fields Due to Accelerating Charges

7.1 Retarded potentials

If we solve the Bianchi identity by writing Fµν = ∂µAν − ∂νAµ, the remaining Maxwell

equation (i.e. the field equation)

∂µF
µν = −4πJν (7.1)

becomes

∂µ∂
µAν − ∂µ∂

νAµ = −4πJν . (7.2)

If we choose to work in the Lorenz gauge,

∂µA
µ = 0 , (7.3)

then (7.2) becomes simply

Aµ = −4πJµ . (7.4)

Since Aµ = (φ, ~A) and Jµ = (ρ, ~J), this means we shall have

φ = −4π ρ , ~A = −4π ~J , (7.5)

or, in the three-dimensional language,

∇2φ− ∂2φ

∂t2
= −4π ρ , ∇2 ~A− ∂2 ~A

∂t2
= −4π ~J . (7.6)

114



In general, we can write the solutions to (7.6) as the sums of a particular integral of

the inhomogeneous equation (i.e. the one with the source term on the right-hand side) plus

the general solution of the homogeneous equation (the one with the right-hand side set to

zero). Our interest now will be in finding the particular integral. Solving this problem in the

case of static sources and fields will be very familiar from electrostatics and magnetostatics.

Now, however, we wish to solve for the particular integral in the case where there is time

dependence too. Consider the equation for φ first.

First consider the situation where there is just an infinitesimal amount of charge δe(t)

in an infinitesimal volume located at the origin. (We allow for it to be time dependent, in

general.) Thus the charge density is24

ρ = δe(t) δ3(~R) , (7.7)

where ~R is the position vector from the origin to the observation point. We therefore wish

to solve

∇2φ− ∂2φ

∂t2
= −4π δe(t) δ3(~R) . (7.8)

When ~R 6= 0. we have simply ∇2φ− ∂2φ/∂t2 = 0.

Clearly, φ depends on ~R only through its magnitude R ≡ |~R|, and so φ = φ(t, R). Now,

with ~R = (x1, x2, x3), we have R2 = xixi and so ∂iR = xi/R. Consequently, we shall have

∂iφ =
xi
R
φ′ , (7.9)

where φ′ ≡ ∂φ/∂R, and then

∇2φ = ∂i∂iφ = φ′′ +
2

R
φ′ . (7.10)

Letting Φ = Rφ, we have

φ′ =
1

R
Φ′ − 1

R2
Φ , φ′′ =

1

R
Φ′′ − 2

R2
Φ′ +

2

R3
Φ . (7.11)

This means that for ~R 6= 0, we shall have

∂2Φ

∂R2
− ∂2Φ

∂t2
= 0 , i.e.

( ∂
∂t

− ∂

∂R

)( ∂
∂t

+
∂

∂R

)
Φ = 0 . (7.12)

24Of course it would not be possible to have a single element of charge in isolation that varied with time,

since it would be forbidden by charge conservation. One should think of this charge element as being part

of a charge distribution, whose total charge remains fixed but where the individual charge elements can vary

within it as a function of time. We shall superpose the contributions from the distinct charge elements later

on in the calculation.
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The general solution to this equation is

Φ(t, R) = f1(t−R) + f2(t+R) , (7.13)

where f1 and f2 are arbitrary functions.

The solution with f1 is called the retarded solution, and the solution with f2 is called

the advanced solution. The reason for this terminology is that in the retarded solution, the

“effect” occurs after the “cause,” in the sense that the profile of the function f1 propagates

outwards from the origin where the charge de(t) is located. By contrast, in the advanced

solution the effect precedes the cause; the disturbance propagates inwards as time increases.

The advanced solution is acausal, and therefore unphysical, and so we shall keep only the

causal solution, i.e. the retarded solution. The upshot is that for R 6= 0, the solution is

φ =
1

R
Φ(t−R) , (7.14)

where Φ is an as-yet arbitrary function of its argument, which we shall determine shortly.

We clearly expect that φ will go to infinity as R approaches zero, since the charge (albeit

infinitesimal) is located there. Consequently, it will be the case that the derivatives ∂/∂R

will dominate over the time derivatives ∂/∂t near to R = 0, and so in that region we can

write

∇2φ ≈ −4πδe(t) δ3(~R) . (7.15)

This therefore has the usual solution that is familiar from electrostatics, namely

φ ≈ δe(t)

R
, (7.16)

or, in other words,

Φ(t−R) ≈ δe(t) (7.17)

when R is negligibly small. In the limit as R → 0 we therefore have the exact statement

Φ(t) = δe(t). Thus the function Φ is fully, and exactly, determined. Since Φ is already

established, in general, to depend on t and R only through the combination t− R, we can

therefore immediately write down the exact solution valid for all R, namely

Φ(t−R) = δe(t −R) . (7.18)

From (7.14), we therefore have that

φ(~R, t) =
δe(t −R)

R
. (7.19)
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This solution is valid for the particular case of an infinitesimal charge δe(t) located

at R = 0. For a general time-dependent charge distribution ρ(~r, t), we just exploit the

linearity of the Maxwell equations and sum up the contributions from all the charges in the

distribution. This therefore gives

φ(~r, t) =

∫
ρ(~r ′, t−R)

R
d3~r ′ , (7.20)

where ~R ≡ ~r − ~r ′ and R = |~R| = |~r − ~r ′|. This solution of the inhomogeneous equation

is the one that is “forced” by the source term, in the sense that it vanishes if the source

charge density ρ vanishes. The general solution is given by this particular integral plus an

arbitrary solution of the homogeneous equation φ = 0. The solution (7.20) can be written

as

φ(~r, t) =

∫
ρ(~r ′, t− |~r − ~r ′|)

|~r − ~r ′| d3~r ′ . (7.21)

In an identical fashion, we can see that the solution for the 3-vector potential ~A in the

presence of a 3-vector current source ~J(~r, t) will be

~A(~r, t) =

∫ ~J(~r ′, t− |~r − ~r ′|)
|~r − ~r ′| d3~r ′ . (7.22)

The solutions for φ(~r, t) and ~A(~r, t) that we have obtained here are called the Retarded

Potentials. The analogous “advanced potentials” would correspond to having t + |~r − ~r ′|
instead of t − |~r − ~r ′| as the time argument of the charge and current densities inside the

integrals. It is clear that the retarded potentials are the physically sensible ones, in that

the potentials at the present time t depend upon the charge and current densities at times

≤ t. In the advanced potentials, by contrast, the potentials at the current time t would be

influenced by what the charge and current densities will be in the future. This would be

unphysical, since it would violate causality.

Since the procedure by which we arrived at the retarded potential solutions(7.21) and

(7.22) may have seemed slightly “unrigorous,” it is perhaps worthwhile to go back and check

that they are indeed correct. This can be done straightforwardly, simply by substituting

them into the original wave equations (7.6). One finds that they do indeed yield exact

solutions of the equations. We leave this as an exercise for the reader.

7.2 Lienard-Wiechert potentials

We now turn to a discussion of the electromagnetic fields produced by a point charge e

moving along an arbitrary path ~r = ~r0(t). We already considered a special case of this in
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section 5.3, where we worked out the fields produced by a charge in uniform motion (i.e.

moving at constant velocity). In that case, we could work out the electromagnetic fields by

using the trick of transforming to the Lorentz frame in which the particle was at rest, doing

the very simple calculation of the fields in that frame, and then transforming back to the

frame where the particle was in uniform motion.

Now, we are going to study the more general case where the particle can be accelerating;

i.e. where its velocity is not uniform. This means that there does not exist an inertial frame

in which the particle is at rest for all time, and so we cannot use the previous trick.

It is worth emphasising that even though the particle is accelerating, this does not mean

that we cannot solve the problem using special relativity. The point is that we shall only

ever study the fields from the viewpoint of an observer who is in an inertial frame, and

so for this observer, the laws of special relativity apply. Only if we wanted to study the

problem from the viewpoint of an observer in an accelerating frame, such as the rest-frame

of the particle, would we need to use the laws of general relativity.

One way to obtain the potentials due to the moving charge is to make use of the expres-

sions for the retarded potentials that we derived in the previous subsection, substituting in

the appropriate functions for the charge density and current density of the point charge.

We shall carry out that calculation shortly. Since this is essentially just an exercise in

mathematics we shall first present a different derivation, based more on the application of

physical principles. This derivation raises an interesting point about causality.

Note that although we cannot use special relativity to study the problem in the rest frame

of the accelerating particle, we can, and sometimes will, make use of an instantaneous rest

frame. This is an inertial frame whose velocity just happens to match exactly the velocity

of the particle at a particular instant of time. Since the particle is accelerating, then a

moment later the particle will no longer be at rest in this frame. We could, if we wished,

then choose an “updated” instantaneous rest frame, and use special relativity to study the

problem (for an instant) in the new inertial frame. We shall find it expedient at times to

make use of the concept of an instantaneous rest frame, in order to simply intermediate

calculations. Ultimately, of course, we do not want to restrict ourselves to having to hop

onto a new instantaneous rest frame every time we discuss the problem, and so the goal is

to obtain results that are valid in any inertial frame.

Now, on with the problem. We can expect, on the grounds of causality, that the electro-

magnetic fields we observe at the spacetime point P specified by the cordinates (~r, t) should

depend only on the the position and state of motion of the particle at earlier points in its
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path that are causally connected to the observation point. That is to say, that only those

points on the path for which information could reach the observation point P by travelling

at less than or equal to the speed of light should influence the fields observed at (~r, t). In

fact, it turns out that a much stronger statement is true: for each spacetime observation

point (~r, t) there is only one point on the particle’s path that influences the observed fields,

namely the point whose distance from P is such that a light beam emitted at the so-called

“retarded time” time t′ when the particle was there reaches the observation point exactly

at the observation time t. In other words, the information governing the fields at the ob-

servation point P propagates there at exactly the speed of light; no faster (obviously), but

also no slower.

We can now give a mathematically precise definition of the retarded time t′, as measured

in the chosen inertial frame. It is useful to define

~R(t′) ≡ ~r − ~r0(t
′) . (7.23)

This is the radius vector from the location ~r0(t
′) of the charge at the time t′ to the obser-

vation point r. The time t′ is then determined by

t− t′ = R(t′) , where R(t′) = |~R(t′)| . (7.24)

It can be shown that there is one solution for t′, for each choice of t, provided that the

particle is moving (as it must) with a velocity ~v(t′) = d~r0(t
′)/dt′ that is less than the speed

of light, i.e. |~v| < 1.

In the Lorentz frame where the particle is at rest at the particular instant t′, the potential

at ~r at time t will, according to the claim above, be given by

φ =
e

R(t′)
, ~A = 0 . (7.25)

We can determine the 4-vector potential Aµ in an arbitrary Lorentz frame simply by invent-

ing a 4-vector expression that reduces to (7.25) under the specialisation that the velocity

~v ≡ d~r ′/dt′ of the charge is zero at time t′.

Let the 4-velocity of the charge, in the observer’s inertial frame, be Uµ. If the charge is

at rest, its 4-velocity will be

Uµ = (1,~0) . (7.26)

Thus to write a 4-vector expression for Aµ = (φ, ~A) that reduces to (7.25) if Uµ is given by

(7.26), we just have to find a scalar f such that

Aµ = f Uµ , (7.27)
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with f becoming e/R(t′) in the special case. Let us define the 4-vector

Rµ = (t− t′, ~r − ~r0(t
′)) = (t− t′, ~R(t′)) . (7.28)

(This is clearly a 4-vector, because (t, ~r) is a 4-vector, and (t′, ~r0(t′)), the spacetime coordi-

nates of the particle, is a 4-vector.) Then, we can write f as the scalar

f =
e

(−Uν Rν)
, and so Aµ = − eUµ

(UνRν)
, (7.29)

since clearly if Uµ is given by (7.26), we shall have −Uν Rν = −R0 = R0 = t− t′ = R(t′).

Having written Aµ as a 4-vector expression that reduces to (7.25) under the specialisation

(7.26), we know that it must be the correct expression in any Lorentz frame. Now, we have

Uµ = (γ, γ ~v) , where γ =
1√

1− v2
, (7.30)

and so we see that

φ(~r, t) = A0 =
eγ

(t− t′)γ − γ ~v · ~R
=

e

t− t′ − ~v · ~R
=

e

R− ~v · ~R
,

~A(~r, t) =
eγ ~v

(t− t′)γ − γ ~v · ~R
=

e~v

R− ~v · ~R
= φ(~r, t)~v . (7.31)

To summarise, we have concluded that the gauge potentials for a charge e moving along

the path ~r = ~r0(t
′), as seen from the point ~r at time t, are given by

φ(~r, t) =
e

R− ~v · ~R
, ~A(~r, t) =

e~v

R− ~v · ~R
, (7.32)

where all quantities on the right-hand sides are evaluated at the time t′, i.e. ~R means ~R(t′)

and ~v means d~r0(t
′)/dt′, with

~R(t′) = ~r − ~r0(t
′) , (7.33)

and t′ is determined by solving the equation

R(t′) = t− t′ , where R(t′) ≡ |~R(t′)| . (7.34)

These potentials are known as the Lienard-Wiechert potentials.

The next step will be to calculate the electric and magnetic fields from the Lienard-

Wiechert potentials. However, before doing so, it is perhaps worthwhile to pause and give

an alternative derivation of the result for the potentials. People’s taste in what constitutes

a satisfying proof of a result can differ, but I have to say that I personally find the derivation

above rather unsatisfying. I would regard it as a bit of hand-waving argument, which one

maybe would use after having first given a proper derivation, in order to try to give a
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physical picture of what is going on. The basic premise of the derivation above is that the

potentials “here and now” will be given precisely by applying Coulomb’s law to the position

the particle was in “a light-travel time” ago. It is not obvious that this should give the right

answer.25 It is in fact very interesting that this does give the right answer, but it should

better be viewed as a remarkable fact that emerges only after one has first given a proper

derivation of the result, rather than as a solid derivation in its own right.

A “proper” derivation of the Lienard-Wiechert potentials can be given as follows. We

take as the starting point the expressions (7.21) and (7.22) for the retarded potentials due to

a time-dependent charge and current source. These expressions can themselves be regarded

as solid and rigorous, since one only has to verify by direct substitution into (7.6) that they

are indeed correct. Consider first the retarded potential for φ, given in (7.21). We can

rewrite this as a 4-dimensional integral by introducing a delta-function in the time variable,

so that

φ(~r, t) =

∫ ∫
ρ(~r ′, t′′)
|~r − ~r ′| δ(t

′′ − t+ |~r − ~r ′|) dt′′ d3~r ′ . (7.35)

The charge density for a point charge e moving along the path ~r = ~r0(t) is given by

ρ(~r, t) = e δ3(~r − ~r0(t)) . (7.36)

This means that we shall have

φ(~r, t) =

∫ ∫
e δ3(~r ′ − ~r0(t

′′))
|~r − ~r ′| δ(t′′ − t+ |~r − ~r ′|) dt′′ d3~r ′ , (7.37)

and so after performing the spatial integrations we obtain

φ(~r, t) =

∫
e

|~r − ~r0(t′′)|
δ(t′′ − t+ |~r − ~r0(t

′′)|) dt′′ . (7.38)

To evaluate the time integral, we need to make use of a basic result about the Dirac

delta-function, namely that if a function f(x) has as zero at x = x0, then
26

δ(f(x)) = δ(x− x0)
∣∣∣
df

dx

∣∣∣
−1

x=x0
, (7.39)

25In particular, as mentioned previously, causality can only be used to argue that the potentials at (~r, t)

could, a priori, depend on the entire past history of the particle that is in causal contact with the spacetime

point (~r, t). Thus, although one can certainly say that any part of its history that lies “outside the light

cone” cannot affect the potentials at (~r, t), one cannot say, based on causality alone, that only the instant

when the particle was a light-travel distance away could be relevant for determining the potentials at (~r, t).

As a matter of fact if one repeats the analogous calculation in a general D-dimensional spacetime, then it

turns out that only when D is even (such as our familiar 4-dimensional world) does the effect propagate

only “on the light-cone.” In an odd spacetime dimension, the analogous Lienard-Wiechert potentials really

do depend on the entire previous causally-connected history of the particle.
26To prove this, consider the integral I =

∫
dxh(x)δ(f(x)) for an arbitrary function h(x). Next, change
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where df/dx is evaluated at x = x0. (The result given here is valid if f(x) vanishes only at

the point x = x0. If it vanishes at more than one point, then there will be a sum of terms

of the type given in (7.39).)

To evaluate (7.38), we note that

∂

∂t′′

(
t′′ − t+ |~r − ~r0(t

′′)|
)

= 1 +
∂

∂t′′

(
(~r − ~r0(t

′′)) · (~r − ~r0(t
′′))
)1/2

,

= 1 +
(
(~r − ~r0(t

′′)) · (~r − ~r0(t
′′))
)−1/2

(~r − ~r0(t
′′)) · ∂(−~r0(t

′′))
∂t′′

,

= 1− ~v · (~r − ~r0(t
′′))

|~r − ~r0(t′′)|
,

= 1− ~v · ~R(t′′)
R(t′′)

, (7.40)

where ~v = d~r0(t
′′)/dt′′. Following the rule (7.39) for handling a “delta-function of a func-

tion,” we therefore take the function in the integrand of (7.38) that multiplies the delta-

function, evaluate it at the time t for which the argument of the delta-function vanishes,

and divide by the absolute value of the derivative of the argument of the delta-function.

This therefore gives

φ(~r, t) =
e

R(t′)− ~v · ~R(t′)
, (7.41)

where t′ is the solution of t− t′ = R(t′), and so we have reproduced the previous expression

for the Lienard-Wiechert potential for φ in (7.32). The derivation for ~A is very similar.

7.3 Electric and magnetic fields of a moving charge

Having obtained the Lienard-Wiechert potentials φ and ~A of a moving charge, the next step

is to calculate the associated electric and magnetic fields,

~E = −~∇φ− ∂ ~A

∂t
, ~B = ~∇× ~A . (7.42)

variable to z = f(x), so dx = dz/(df/dx). Then we have

I =

∫
dzh(x)

δ(z)

|df/dx| = h(x0)/|df/dx|
∫
δ(z)dz = h(x0)/|df/dx| ,

where df/dx is evaluated at x = x0. Thus we have

I = h(x0)/|df/dx|x0
=

∫
dxh(x)

δ(x− x0)

|df/dx|x0

,

which proves (7.39). (The reason for the absolute-value on |df/dz| is that it is to be understood that the

direction of the limits of the z integration should be the standard one (negative to positive). If the gradient

of f is negative at x = x0 then one has to insert a minus sign to achieve this. This is therefore handled by

the absolute-value sign.)
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To do this, we shall need the following results. First, we note that

∂R

∂t
=
∂R

∂t′
∂t′

∂t
, (7.43)

and so, since R2 = RiRi we have

∂R

∂t′
=
Ri
R

∂Ri
∂t′

= −vi(t
′)Ri
R

= −~v ·
~R

R
. (7.44)

(Recall that ~R means ~R(t′), and that it is given by (7.33).) Equation (7.43) therefore

becomes
∂R

∂t
= −~v ·

~R

R

∂t′

∂t
, (7.45)

and so, since we have from (7.34) that R(t′) = t− t′, it follows that

1− ∂t′

∂t
= −~v ·

~R

R

∂t′

∂t
. (7.46)

Solving for ∂t′/∂t, we therefore have the results that

∂t′

∂t
=

(
1− ~v · ~R

R

)−1
, (7.47)

∂R

∂t
= − ~v · ~R

R− ~v · ~R
. (7.48)

Some other expressions we shall also need are as follows. First, from t − t′ = R(t′) it

follows that ∂it
′ = −∂iR(t′). Now ~R(t′) = ~r − ~r0(t

′), and so

R2 = (xj − x0j(t
′))(xj − x0j (t

′)) . (7.49)

From this, by acting with ∂i, we obtain

2R∂iR = 2(δij − ∂ix
0
j (t

′))(xj − x0j(t
′)) ,

= 2Ri − 2
∂x0j (t

′)

∂t′
∂t′

∂xi
(xj − x0j (t

′)) ,

= 2Ri − 2~v · ~R ∂it′ . (7.50)

From this and ∂it
′ = −∂iR(t′) it follows that

∂it
′ = − Ri

R− ~v · ~R
, ∂iR =

Ri

R− ~v · ~R
. (7.51)

Further results that follow straightforwardly are

∂iRj = ∂i(xj − x0j (t
′)) = δij −

∂x0j (t
′)

∂t′
∂it

′ = δij +
vjRi

R− ~v · ~R
,

∂ivj =
∂vj
∂t′

∂it
′ = − v̇j Ri

R− ~v · ~R
,

123



∂vi
∂t

=
∂vi
∂t′

∂t′

∂t
=

v̇iR

R− ~v · ~R
,

∂R

∂t
= − ~v · ~R

R− ~v · ~R
,

∂ ~R

∂t
=

∂ ~R

∂t′
∂t′

∂t
= −~v ∂t

′

∂t
= − ~v R

R− ~v · ~R
. (7.52)

Note that v̇i means ∂vi/∂t
′; we shall define the acceleration ~a of the particle by

~a ≡ ∂~v

∂t′
. (7.53)

We are now ready to evaluate the electric and magnetic fields. From (7.32) and the

results above, we have

Ei = −∂iφ− ∂Ai
∂t

,

=
e

(R− ~v · ~R)2
(∂iR− ∂i(vjRj))−

e

R− ~v · ~R
∂vi
∂t

+
evi

(R − ~v · ~R)2
(∂R
∂t

− ∂(~v · ~R)
∂t

)
,

=
e

(R− ~v · ~R)3
{
Ri − vi(R− ~v · ~R)− v2Ri + ~a · ~RRi − aiR (R − ~v · ~R)

−vi~v · ~R− vi~a · ~RR+ v2viR
}
,

=
e(1− v2)(Ri − viR)

(R − ~v · ~R)3
+
e[~a · ~R (Ri − viR)− ai(R− ~v · ~R)R]

(R− ~v · ~R)3
. (7.54)

This can be rewritten as

~E =
e(1− v2)(~R − ~v R)

(R − ~v · ~R)3
+
e~R× [(~R − ~v R)× ~a]

(R− ~v · ~R)3
. (7.55)

An analogous calculation of ~B shows that it can be written as

~B =
~R× ~E

R
. (7.56)

Note that this means that ~B is perpendicular to ~E.

The first term in (7.55) is independent of the acceleration ~a, and so it represents a

contribution that is present even if the charge is in uniform motion. It is easily seen that

at large distance, where R→ ∞, it falls off like 1/R2. If the charge is moving with uniform

velocity ~v then we shall have

~r0(t) = ~r0(t
′) + (t− t′)~v , (7.57)

and so

~R(t′)− ~v R(t′) = ~r − ~r0(t
′)− (t− t′)~v ,

= ~r − ~r0(t) + (t− t′)~v − (t− t′)~v ,

= ~R(t) . (7.58)
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In other words, in this case of uniform motion, ~R(t′) − ~v R(t′) is equal to the vector ~R(t)

that gives the line joining the charge to the point of observation at the time the observation

is made. We shall also then have

R(t′)− ~v · ~R(t′) = R(t′)− v2R(t′)− ~v · ~R(t) ,

= (1− v2)R(t′)− ~v · ~R(t) . (7.59)

If we now introduce the angle θ between ~v and ~R(t), we shall have ~v · ~R(t) = v R(t) cos θ.

Since, as we saw above, ~R(t′) = ~v R(t′) + ~R(t), we obtain, by squaring,

R2(t′) = v2R2(t′) + 2vR(t)R(t′) cos θ +R2(t) , (7.60)

and this quadratic equation for R(t′) can be solved to give

R(t′) =
vR(t) cos θ +R(t)

√
1− v2 sin2 θ

1− v2
. (7.61)

Equation (7.59) then gives

R(t′)−~v· ~R(t′) = vR(t) cos θ+R(t)

√
1− v2 sin2 θ−vR(t) cos θ = R(t)

√
1− v2 sin2 θ . (7.62)

For a uniformly moving charge we therefore obtain the result

~E =
e~R(t)

R3(t)

1− v2

(1− v2 sin2 θ)3/2
, (7.63)

which has reproduced the result (5.40) that we had previously obtained by boosting from

the rest frame of the charged particle.

The second term in (7.55) is proportional to ~a, and so it occurs only for an accelerating

charge. At large distance, this term falls off like 1/R, in other words, much less rapidly

than the 1/R2 fall-off of the first term in (7.55). In fact the 1/R fall-off of the acceleration

term is characteristic of an electromagnetic wave, as we shall now discuss.

7.4 Radiation by accelerated charges

A charge at rest generates a purely electric field, and if it is in uniform motion it generates

both ~E and ~B fields. In neither case, of course, does it radiate any energy. However, if the

charge is accelerating, then it actually emits electromagnetic radiation.

The easiest case to consider is when the velocity of the charge is small compared with

the speed of light. In this case the acceleration term in (7.55) is approximated by

~E =
e~R× (~R× ~a)

R3
=
e~n× (~n× ~a)

R
, (7.64)

125



where

~n ≡
~R

R
. (7.65)

Note that ~n · ~E = 0, and that ~E is also perpendicular to ~n × ~a. This means that the

polarisation of ~E lies in the plane containing ~n and ~a, and is perpendicular to ~n.

From (7.56) we shall also have

~B = ~n× ~E . (7.66)

As usual, all quantities here in the expressions for ~E and ~B are evaluated at the retarded

time t′.

The energy flux, given by the Poynting vector, is given by

~S =
1

4π
~E × ~B =

1

4π
~E × (~n× ~E) =

1

4π
E2 ~n− 1

4π
(~n · ~E) ~E , (7.67)

and so, since ~n · ~E = 0 we have

~S =
1

4π
E2 ~n . (7.68)

Let us define θ to be the angle between the unit vector ~n and the acceleration ~a. Then

we shall have

~E =
e

R

(
(~n · ~a)~n− ~a

)
=

e

R
(a~n cos θ − ~a) , (7.69)

and so

E2 =
e2

R2
(a2 cos2 θ − 2a2 cos2 θ + a2) =

e2a2 sin2 θ

R2
, (7.70)

implying that the energy flux is

~S =
e2a2 sin2 θ

4πR2
~n . (7.71)

The area element d~Σ can be written as

d~Σ = R2 ~n dΩ , (7.72)

where dΩ = sin θ dθdϕ is the area element on the unit-radius sphere (i.e. the solid angle

element). The power radiated into the area element d~Σ is dP = ~S · d~Σ = R2~n · ~S dΩ, and
so we find that

dP

dΩ
=
e2a2

4π
sin2 θ (7.73)

is the power radiated per unit solid angle.

The total power radiated in all directions is given by

P =

∫
dP

dΩ
dΩ =

e2a2

4π

∫ π

0
sin3 θ dθ

∫ 2π

0
dϕ ,

= 1
2e

2a2
∫ π

0
sin3 θ dθ = 1

2e
2a2

∫ 1

−1
(1− c2)dc = 2

3e
2a2 , (7.74)
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where, to evaluate the θ integral we change variable to c = cos θ. The expression

P = 2
3e

2a2 (7.75)

is known as the Larmor Formula for a non-relativistic accelerating charge.

The Larmor formula can be generalised to the relativistic result fairly easily. In principle,

we could simply repeat the argument given above, but without making the approximation

that v is small compared to 1 (the speed of light). Note that in terms of the unit vector

~n = ~R/R, the expression (7.55) for the electric field becomes

~E =
e(1− v2)(~n− ~v)

R2 (1− ~n · ~v)3 +
e~n× [(~n− ~v)× ~a]

R (1− ~n · ~v)3 . (7.76)

We can, in fact, obtain the relativisitic Larmor formula by a simple trick. First, we note from

(7.76) that since ~S = ( ~E × ~B)/(4π) and ~B = ~n× ~E, the energy flux from the acceleration

term must be quadratic in the acceleration ~a. We can also note that the total radiated

power P is a Lorentz scalar (since it is energy per unit time, and each of these quantities

transforms as the 0 component of a 4-vector). Thus, the task is to find a Lorentz-invariant

expression for P that reduces to the non-relativisitic Larmor result (7.75) in the limit when

v goes to zero.

First, we note that the non-relativistic Larmor formula (7.75) can be written as

P = 2
3e

2a2 =
2e2

3m2

(d~p
dt

)2
. (7.77)

There is only one Lorentz-invariant quantity, quadratic in ~a, that reduces to this expression

in the limit that v goes to zero. It is given by

P =
2e2

3m2

dpµ

dτ

dpµ
dτ

, (7.78)

where pµ is the 4-momentum of the particle and τ is the proper time along its path. Noting

that pµ = m(γ, γ~v), we see that

dpµ

dτ
= γ

dpµ

dt
= mγ(γ3~v · ~a, γ3(~v · ~a)~v + γ~a) , (7.79)

and so

dpµ

dτ

dpµ
dτ

= m2γ2[−γ6(~v · ~a)2 + γ6v2(~v · ~a)2 + 2γ4(~v · ~a)2 + γ2a2] ,

= m2γ2[γ4(~v · ~a)2 + γ2a2)] . (7.80)

Now consider the quantity

a2 − (~v × ~a)2 = a2 − ǫijkǫiℓmvjakvℓam ,

= a2 − v2a2 + (~v · ~a)2 = a2

γ2
+ (~v · ~a)2 , (7.81)
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which shows that we can write

dpµ

dτ

dpµ
dτ

= m2γ6
(a2

γ2
+ (~v · ~a)2

)
= m2γ6 [a2 − (~v × ~a)2] . (7.82)

Thus we see that the scalar P given in (7.78) is given by

P = 2
3e

2γ6[a2 − (~v × ~a)2] . (7.83)

This indeed reduces to the non-relativistic Larmor formula (7.75) if the velocity ~v is sent to

zero. For the reasons we described above, it must therefore be the correct fully-relativistic

Larmor result for the total power radiated by an accelerating charge.

7.5 Applications of Larmor formula

7.5.1 Linear accelerator

In a linear accelerator, a charged massive particle is accelerated along a straight-line tra-

jectory, and so its velocity ~v and acceleration ~a are parallel. Defining p = |~p| = mγ|~v|, we
have

dp

dt
= mγ

dv

dt
+mv

dγ

dt
, (7.84)

where v = |~v| and γ = (1− v2)−1/2. Clearly we have

v
dv

dt
= ~v · d~v

dt
= ~v · ~a = va ,

dγ

dt
= γ3~v · d~v

dt
= γ3va , (7.85)

and so
dp

dt
= mγ3a . (7.86)

With ~v and ~a parallel, the relativisitic Larmor formula (7.83) gives P = 2
3e

2γ6a2, and so we

have

P =
2e2

3m2

(dp
dt

)2
. (7.87)

The expression (7.87) gives the power that is radiated by the charge as it is accelerated

along a straight line trajectory. In a particle accelerator, the goal, obviously, is to accelerate

the particles to as high a velocity as possible. Equation (7.87) describes the the power that

is lost through radiation when the particle is being accelerated. The energy E of the particle

is related to its rest mass m and 3-momentum ~p by the standard formula

E2 = p2 +m2 . (7.88)

The rate of change of energy with distance travelled, dE/dx, is therefore given by

E dE
dx

= p
dp

dx
, (7.89)
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and so we have
dE
dx

=
p

E
dp

dx
=
mγv

mγ

dp

dx
= v

dp

dx
=
dx

dt

dp

dx
=
dp

dt
. (7.90)

This means that (7.87) can be rewritten as

P =
2e2

3m2

(dE
dx

)2
. (7.91)

The “energy-loss factor” of the accelerator can be judged by taking the ratio of the

power radiated divided by the power supplied. By energy conservation, the power supplied

is equal to the rate of change of energy of the particle, dE/dt. Thus we have

Power radiated

Power supplied
=

P

(dE/dt) =
P

(dE/dx)
dt

dx
=

P

v (dE/dx) ,

=
2e2

3m2v

dE
dx

. (7.92)

In the relativistic limit, where v is very close to the speed of light (as is typically achieved

in a powerful linear accelerator), we therefore have

Power radiated

Power supplied
≈ 2e2

3m2

dE
dx

. (7.93)

A typical electron linear accelerator achieves an energy input of about 10 MeV per metre,

and this translates into an energy-loss factor of about 10−13. In other words, very little of

the applied power being used to accelerate the electron is lost through Larmor radiation.

7.5.2 Circular accelerator

The situation is very different in the case of a circular accelerator, since the transverse ac-

celeration necessary to keep the particle in a circular orbit is typically very much larger than

the linear acceleration discussed above. In other words, the direction of the 3-momemtum

~p is changing rapidly, while, by contrast, the energy, and hence the magnitude of ~p, is rela-

tively slowly-changing. In fact the change in |~p| per revolution is rather small, and we can

study the power loss by assuming that the particle is in an orbit of fixed angular frequency

ω. This means that we shall have
∣∣∣
d~p

dt

∣∣∣ = ω |~p| , (7.94)

and so
∣∣∣
d~p

dτ

∣∣∣ = γω |~p| , (7.95)

where dτ = dt/γ is the proper-time interval. Since the energy is constant in this approxi-

mation, we therefore have

dp0

dτ
= 0 , and so

dpµ

dτ

dpµ
dτ

=
(d~p
dτ

)2
= γ2ω2p2 . (7.96)
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Using equation (7.78) for the Larmor power radiation, we therefore have

P =
2e2

3m2
γ2ω2p2 = 2

3e
2γ4ω2v2 . (7.97)

If the radius of the accelerator is R then the angular and linear velocities of the particle are

related by ω = v/R and so the power loss is given by

P =
2e2γ4v4

3R2
. (7.98)

The radiative energy loss per revolution, ∆E , is given by the product of P with the

period of the orbit, namely

∆E =
2πRP

v
=

4πe2γ4v3

3R
. (7.99)

A typical example would be a 10 GeV electron synchrotron, for which the radius R is about

100 metres. Plugging in the numbers, this implies an energy loss of about 10 MeV per

revolution, or about 0.1% of the energy of the particle. Bearing in mind that the time

taken to complete an orbit is very small (the electron is travelling at nearly the speed of

light), it is necessary to supply energy at a very high rate in order to replenish the radiative

loss. It also implies that there will be a considerable amount of radiation being emitted by

the accelerator.

7.6 Angular distribution of the radiated power

We saw previously that for a non-relativistic charged particle whose acceleration ~a makes

an angle θ with respect to the position vector ~R, the angular distribution of the radiated

power is given by (see (7.73))
dP

dΩ
=
e2a2

4π
sin2 θ . (7.100)

In the general (i.e. relativistic) case, where the velocity ~v is large, the we have, from (7.76),

the large-R radiation-field term is

~E =
e~n× [(~n − ~v)× ~a]

R (1− ~n · ~v)3 , ~B = ~n× ~E . (7.101)

The Poynting vector is therefore given by

~S =
1

4π
( ~E × ~B) =

1

4π
[ ~E × (~n× ~E)] ,

=
1

4π
~nE2 , (7.102)

since ~n · ~E = 0. Thus ~S is in the radial direction (parallel to ~R(t′), and we have

~n · ~S =
e2

4πR2

∣∣∣
~n× [(~n − ~v)× ~a]

(1− ~n · ~v)3
∣∣∣
2
, (7.103)
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where as usual all quantities on the right-hand side are evaluated at the retarded time t′

calculated from the equation t − t′ = R(t′), with ~R(t′) = ~r − ~r0(t
′). It is conventional to

denote the quantity in (7.103) by [~n · ~S]ret., to indicate that it is evaluated at the retarded

time t′. Since dΣ = ~nR2 dΩ, we shall have

dP (t)

dΩ
= [~n · ~SR2]ret . (7.104)

The associated energy radiated during the time interval from t = T1 to t = T2 is therefore

given by
dE
dΩ

=

∫ T2

T1
[R2 ~n · ~S]ret.dt , (7.105)

Defining the corresponding retarded times t′ = T ′
i , the integral can therefore be rewritten

as27

dE
dΩ

=

∫ T ′
2

T ′
1

[R2 ~n · ~S]ret.
dt

dt′
dt′ . (7.106)

The quantity [R2 ~n · ~S]ret.(dt/dt′) is the power radiated per unit solid angle, as measured

with respect to the charge’s retarded time t′, and so we have the result that

dP (t′)
dΩ

= [R2 ~n · ~S]ret.
dt

dt′
= (1− ~n · ~v)[R2 ~n · ~S]ret. . (7.107)

(Note that we used the result (7.47) here.)

7.6.1 Angular power distribution for linear acceleration

As an example, consider the situation when the charge is accelerated uniformly for only a

short time, so that ~v as well as ~a are approximately constant during the time interval of the

acceleration. This means that ~n and R are approximately constant, and so from (7.103)

and (7.107) we obtain the angular distribution

dP (t′)
dΩ

=
e2

4π

|~n× [(~n − ~v)× ~a]|2
(1− ~n · ~v)5 . (7.108)

If we now suppose that the acceleration is linear, i.e. that ~v and ~a are parallel, then we

obtain
dP (t′)
dΩ

=
e2a2

4π

sin2 θ

(1− v cos θ)5
, (7.109)

where as before we define θ to be the angle between ~a and ~n.

27All that is really being said here is that we can relate the previously-defined quantity dP (t)/dΩ (power

per unit solid angle as measured by the observer at time t) to dP (t′)/dΩ (power per unit solid angle as

measured at the particle, at retarded time t′) by dP/dΩ dt = dP/dΩ (dt/dt′) dt′ ≡ dP (t′)/dΩ dt′.
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When |v| << 1, the expression (7.109) clearly reduces to the non-relativistic result given

in (7.73). In this limit, the angular radiated power distribution is described by a figure-of-

eight, oriented perpendicularly to the direction of the acceleration. As the velocity becomes

larger, the two lobes of the figure-of-eight start to tilt forwards, along the direction of the

acceleration. This is illustrated for the non-relativistic and relativisitic cases in Figures 1

and 2 below. In each case, the acceleration is to the right along the horizontal axis.

-0.4 -0.2 0.2 0.4
a

-1

-0.5

0.5

1

Figure 1: The angular power distribution in the non-relativistic case

The angle at which the radiated power is largest is found by solving d(dP/dΩ)/dθ = 0.

This gives

2(1 − v cos θ) cos θ − 5v sin2 θ = 0 , (7.110)

and hence

θmax. = arccos
(√1 + 15v2 − 1

3v

)
. (7.111)

In the case of a highly relativistic particle, for which v is very close to the speed of light,

the velocity itself is not a very convenient parameter, and instead we can more usefully

characterise it by γ = (1− v2)−1/2, which becomes very large in the relativistic limit. Thus,
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Figure 2: The angular power distribution in the relativistic case (v = 4/5)

substituting v =
√
1− γ−2 into (7.111), we obtain

θmax. = arccos
(4
√
1− 15

16γ
−2 − 1

3
√
1− γ−2

)
. (7.112)

At large γ we can expand the argument as a power series in γ−2, finding that

θmax. ≈ arccos(1− 1
8γ

−2) . (7.113)

This implies that θmax. is close to 0 when γ is very large. In this regime we have cos θmax. ≈
1− 1

2θ
2
max., and so in the highly relativistic case we have

θmax. ≈
1

2γ
. (7.114)

We see that the lobes of the angular power distribution tilt forward sharply, so that they

are directed nearly parallel to the direction of acceleration of the particle.

Continuing with the highly-relativistic limit, we may consider the profile of the angular

power distribution for all small angles θ. Substituting

v =
√
1− γ−2 , sin θ ≈ θ , cos θ ≈ 1− 1

2θ
2 (7.115)

into (7.109), and expanding in inverse powers of γ, we find that

dP (t′)
dΩ

≈ e2a2θ2

4π
(
1−

√
1− γ−2(1− 1

2θ
2)
)5 ≈ 8e2a2θ2

π(γ−2 + θ2)5
, (7.116)

which can be written as
dP (t′)
dΩ

≈ 8e2a2γ8

π

(γθ)2

[1 + (γθ)2]5
. (7.117)

133



This shows that indeed there are two lobes, of characteristic width ∆θ ∼ 1/γ, on each side

of θ = 0. The radiated power is zero in the exactly forward direction θ = 0.

We can straightforwardly integrate our result (7.109) for the angular power distribution

for a linearly-accelerated particle, to find the total radiated power. We obtain

P =

∫
dP (t′)
dΩ

dΩ =
e2a2

4π
2π

∫ π

0

sin2 θ

(1− v cos θ)5
sin θ dθ = 1

2e
2a2

∫ 1

−1

(1− c2)dc

(1− vc)5
, (7.118)

where c = cos θ. The integral is elementary, giving the result

P = 2
3e

2γ6a2 . (7.119)

This can be seen to be in agreement with our earlier result (7.83), under the specialisation

that ~a and ~v are parallel.

7.6.2 Angular power distribution for circular motion

For a second example, consider the situation of a charge that is in uniform circular motion.

For these purposes, we need only assume that it is instantaneously in such motion; the

complete path of the particle could be something more complicated than a circle, but such

that at some instant it can be described by a circular motion.

Circular motion implies that the velocity ~v and the acceleration ~a are perpendicular.

At the instant under consideration, we may choose a system of Cartesian axes oriented so

that the velocity ~v lies along the z direction, and the acceleration lies along the x direction.

The unit vector ~n = ~R/R can then be parameterised by spherical polar coordinates (θ, ϕ)

defined in the usual way; i.e. θ measures the angle between ~n and the z axis, and ϕ is the

azimuthal angle, measured from the x axis, of the projection of ~n onto the (x, y) plane.

Thus we shall have

~n = (sin θ cosϕ, sin θ sinϕ, cos θ) , ~v = (0, 0, v) , ~a = (a, 0, 0) . (7.120)

Of course, in particular, we have ~n · ~v = v cos θ.

From (7.103) and (7.107), we have the general expression

dP (t′)
dΩ

=
e2

4π

|~n× [(~n − ~v)× ~a]|2
(1− ~n · ~v)5 , (7.121)

for the angular distribution of the radiated power. Using the fact that ~v ·~a = 0 in the case

of circular motion, we have

|~n× [(~n− ~v)× ~a]|2 = |(~n · ~a)(~n− ~v)− (1− ~n · ~v)~a|2 ,
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= (~n · ~a)2(1− 2~n · ~v + v2) + (1− ~n · ~v)2a2 − 2(~n · ~a)2(1− ~n · ~v) ,

= −(~n · ~a)2(1− v2) + (1− ~n · ~v)2a2 ,

= (1− v cos θ)2a2 − γ−2 a2 sin2 θ cos2 ϕ , (7.122)

and so for instantaneous circular motion we have

dP (t′)
dΩ

=
e2a2

4π(1 − v cos θ)3

[
1− sin2 θ cos2 ϕ

γ2 (1− v cos θ)2

]
. (7.123)

We see that as v tends to 1, the angular distribution is peaked in the forward direction i.e.

in the direction of the velocity ~v, meaning that θ is close to 0.

The total power is obtained by integrating dP (t′)
dΩ over all solid angles:

P (t′) =

∫
dP (t′)
dΩ

dΩ =

∫ 2π

0
dϕ

∫ π

0
sin θdθ

dP (t′)
dΩ

,

=

∫ 2π

0
dϕ

∫ π

0
sin θdθ

e2a2

4π(1− v cos θ)3

[
1− sin2 θ cos2 ϕ

γ2 (1− v cos θ)2

]
,

=

∫ π

0
sin θdθ

e2a2

2(1− v cos θ)3

[
1− sin2 θ

2γ2 (1− v cos θ)2

]
,

=

∫ 1

−1

e2a2

2(1− vc)3

[
1− 1− c2

2γ2(1− vc)2

]
dc , (7.124)

where c = cos θ. After performing the integration, we obtain

P (t′) = 2
3e

2γ4a2 . (7.125)

This expression can be compared with the general result (7.83), specialised to the case

where ~v and ~a are perpendicular. Noting that then

(~v × ~a)2 = ǫijkǫiℓmvjakvℓam = vjvjakak − vjajvkak = vjvjakak = v2a2 , (7.126)

we see that (7.83) indeed agrees with (7.125) in this case.

The total power radiated in the case of linear acceleration, with its γ6 factor as in

(7.119), is larger by a factor of γ2 than the total power radiated in the case of circular

motion, provided we take the acceleration a to be the same in the two cases. However, this

is not always the most relevant comparison to make. Another way to make the comparison

is to take the magnitude of the applied force, |d~p/dt|, to be the same in the two cases. For

circular motion we have that v is constant, and so

d~p

dt
= mγ

d~v

dt
= mγ~a . (7.127)

Thus for circular motion, we have from (7.125) that

P (t′) =
2e2γ2

3m2

∣∣∣
d~p

dt

∣∣∣
2
. (7.128)
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By contrast, for linear acceleration, where ~v is parallel to ~a, we have

d~p

dt
= mγ~a+mγ3(~v · ~a)~v = mγ3~a , (7.129)

and so this gives

P (t′) =
2e2

3m2

∣∣∣
d~p

dt

∣∣∣
2
. (7.130)

Thus if we hold |d~p/dt| fixed when comparing the two, we see that it is the particle in circular

motion whose radiated power is larger than that of the linearly-accelerated particle, by a

factor of γ2.

7.7 Frequency distribution of radiated energy

In this section, we shall discuss the spectrum of frequencies of the electromagnetic radiation

emitted by an accelerating charge. The basic technique for doing this will be to perform a

Fourier transform of the time dependence of the radiated power.

In general, we have

dP (t)

dΩ
= [R2~n · ~S]ret =

1

4π
|[R~E]ret|2 . (7.131)

Let

~G(t) =
1√
4π

[R~E]ret , (7.132)

so that we shall have
dP (t)

dΩ
= | ~G(t)|2 . (7.133)

Note that here dP (t)/dΩ is expressed in the observer’s time t, and not the retarded time

t′. This is because our goal here will be to determine the frequency spectrum of the elec-

tromagnetic radiation as measured by the observer.

Suppose that the acceleration of the charge occurs only for a finite period of time, so

that the total energy emitted is finite. We shall assume that the observation point is far

enough away from the charge that the spatial region spanned by the charge while it is

accelerating subtends only a small angle as seen by the observer.

The total energy radiated per unit solid angle is given by

dW

dΩ
=

∫ ∞

−∞

dP

dΩ
dt =

∫ ∞

−∞
| ~G(t)|2dt . (7.134)

We now define the Fourier transform ~g(ω) of ~G(t):

~g(ω) =
1√
2π

∫ ∞

−∞
~G(t) eiωt dt . (7.135)
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In the usual way, the inverse transform is then

~G(t) =
1√
2π

∫ ∞

−∞
~g(ω) e−iωt dω . (7.136)

It follows that

dW

dΩ
=

∫ ∞

−∞
| ~G(t)|2dt = 1

2π

∫ ∞

−∞
dt

∫ ∞

−∞
dω

∫ ∞

−∞
dω′~g ∗(ω′) · ~g(ω) ei (ω′−ω)t . (7.137)

The t integration can be performed, using

∫ ∞

−∞
dt ei (ω

′−ω)t = 2πδ(ω′ − ω) , (7.138)

and so

dW

dΩ
=

∫ ∞

−∞
dω

∫ ∞

−∞
dω′~g ∗(ω′) · ~g(ω) δ(ω′ − ω) =

∫ ∞

−∞
dω~g ∗(ω) · ~g(ω) , (7.139)

i.e.
dW

dΩ
=

∫ ∞

−∞
dω|~g(ω)|2 . (7.140)

(The result that (7.134) can be expressed as (7.140) is known as Parseval’s Theorem in

Fourier transform theory.)

We can re-express (7.140) as

dW

dΩ
=

∫ ∞

0
dω

d2I(ω,~n)

dωdΩ
, (7.141)

where
d2I(ω,~n)

dωdΩ
= |~g(ω)|2 + |~g(−ω)|2 (7.142)

is the energy emitted per unit solid angle per unit frequency interval. If ~G(t) = [R~E]ret/
√
4π

is real, then

~g(−ω) = 1√
2π

∫ ∞

−∞
dt ~G(t) e−iωt = ~g ∗(ω) , (7.143)

and then
d2I(ω,~n)

dωdΩ
= 2|~g(ω)|2 . (7.144)

Using the expression for ~E in (7.101), the Fourier transform ~g(ω), given by (7.135) with

(7.132), is

~g(ω) =
e

2
√
2π

∫ ∞

−∞
eiωt

[~n× [(~n− ~v)× ~a]

(1− ~n · ~v)3
]

ret
dt , (7.145)

where as usual, the subscript “ret” is a reminder that the quantity is evaluated at the

retarded time t′. Since

dt =
dt

dt′
dt′ = (1− ~n · ~v) dt′ , (7.146)
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we therefore have

~g(ω) =
e

2
√
2π

∫ ∞

−∞
eiω(t

′+R(t′)) ~n× [(~n− ~v)× ~a]

(1− ~n · ~v)2 dt′ . (7.147)

(We have now dropped the “ret” reminder, since everything inside the integrand now de-

pends on the retarded time t′.)

We are assuming that the observation point is far away from the accelerating charge,

and that the period over which the acceleration occurs is short enough that the the vector

~n = ~R(t′)/R(t′) is approximately constant during this time interval. It is convenient to

choose the origin to be near to the particle during its period of acceleration. With the

observer being far away, at position vector ~r, it follows from ~R(t′) = ~r − ~r0(t
′) that to a

good approximation we have

R2(t′) ≈ r2 − 2~r · ~r0(t′) , (7.148)

and so

R(t′) ≈ r
(
1− 2~r · ~r0(t′)

r2

)1/2
≈ r − ~r · ~r0(t′)

r
. (7.149)

Furthermore, we can also approximate ~n ≡ ~R(t′)/R(t′) by ~r/r, and so

R(t′) ≈ r − ~n · ~r0(t′) . (7.150)

Substituting this into (7.147), there will be a phase factor eiωr that can be taken outside

the integral, since it is independent of t′. This overall phase factor is unimportant (it will

cancel out when we calculate |~g(ω)|2, and so we may drop it and write

~g(ω) =
e

2
√
2π

∫ ∞

−∞
eiω(t

′−~n·~r0(t′)) ~n× [(~n − ~v)× ~a]

(1− ~n · ~v)2 dt′ . (7.151)

From (7.144) we therefore have

d2I(ω,~n)

dωdΩ
=

e2

4π2

∣∣∣
∫ ∞

−∞
eiω(t

′−~n·~r0(t′)) ~n× [(~n − ~v)× ~a]

(1− ~n · ~v)2 dt′
∣∣∣
2
, (7.152)

as the energy per unit solid angle per unit frequency interval.

The integral can be neatened up by observing that we can write

~n× [(~n− ~v)× ~a]

(1− ~n · ~v)2 =
d

dt′

[~n× (~n × ~v)

1− ~n · ~v
]
, (7.153)

under the assumption that ~n is a constant. This can be seen be distributing the derivative,

to obtain

d

dt′

[~n× (~n× ~v)

1− ~n · ~v
]

=
~n× (~n × ~a)

1− ~n · ~v +
~n× (~n× ~v) (~n · ~a)

(1− ~n · ~v)2 ,
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=
(1− ~n · ~v)(~n (~n · ~a)− ~a) + (~n (~n · ~v)− ~v)(~n · ~a)

(1− ~n · ~v)2 ,

=
(~n · ~a)(~n − ~v)− (1− ~n · ~v)~a

(1− ~n · ~v)2 ,

=
~n× [(~n − ~v)× ~a]

(1− ~n · ~v)2 . (7.154)

This allows us to integrate (7.152) by parts, to give

d2I(ω,~n)

dωdΩ
=

e2

4π2

∣∣∣−
∫ ∞

−∞

~n× (~n× ~v)

1− ~n · ~v
d

dt′
eiω(t

′−~n·~r0(t′)) dt′
∣∣∣
2
, (7.155)

and hence
d2I(ω,~n)

dωdΩ
=
e2ω2

4π2

∣∣∣
∫ ∞

−∞
~n× (~n× ~v) eiω(t

′−~n·~r0(t′)) dt′
∣∣∣
2
, (7.156)

It should be remarked here that the effect of having integrated by parts is that the

acceleration ~a no longer appears in the expression (7.156). Prior to the integration by

parts, the fact that we were taking the acceleration to be non-zero for only a finite time

interval ensured that the integration over all t′ from −∞ to ∞ would be cut down to

an integration over only the finite time interval during which ~a was non-zero. After the

integration by parts, the integrand in (7.156) no longer vanishes outside the time interval

of the non-zero acceleration, and so one might worry about issues of convergence, and the

validity of having dropped the boundary terms at t′ = ±∞ coming from the integration by

parts. In fact, it can be verified that all is well, and any problem with convergence can be

handled by introducing a convergence factor e−ǫ|t
′|, and then sending ǫ to zero.

We shall make use of the result (7.156) in two applications. In the first, we shall calculate

the frequency spectrum for a relativistic particle in instantaneous circular motion.

7.8 Frequency spectrum for relativistic circular motion

Consider a particle which, at some instant, is following a circular arc of radius ρ. We shall

choose axes so that the arc lies in the (x, y) plane, and choose the origin so that at t = 0

the particle is located at the origin, x = y = 0. Without loss of generality, we may choose

the unit vector ~n (which points in the direction of the observation point) to lie in the (x, z)

plane. We shall, for notational convenience, drop the prime from the time t′, so from now

on t will denote the retarded time.

In fact, we shall make the assumption that the particle is moving highly relativistically.

As we saw earlier, this means that the radiation is concentrated into very narrow beams

in the direction of the velocity vector, and hence we need only consider a small arc of the

trajectory.
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The position vector of the particle at time t will be given by

~r0 =
(
ρ sin

vt

ρ
, ρ cos

vt

ρ
− ρ, 0

)
, (7.157)

where v = |~v| is its speed. Since ~v = d~r0(t)/dt, we shall have

~v =
(
v cos

vt

ρ
,−v sin vt

ρ
, 0
)
. (7.158)

We may parameterise the unit vector ~n, which we are taking to lie in the (x, z) plane, in

terms of the angle θ between ~n and the x axis:

~n = (cos θ, 0, sin θ) . (7.159)

We then have

~n× (~n× ~v) = (~n · ~v)~n − ~v =
(
− v sin2 θ cos

vt

ρ
,−v sin vt

ρ
, v sin θ cos θ cos

vt

ρ

)
. (7.160)

We shall write this as

~n× (~n× ~v) = −v sin vt
ρ
~e‖ + v sin θ cos

vt

ρ
~e⊥ , (7.161)

where

~e‖ = (0, 1, 0) and ~e⊥ = ~n× ~e‖ = (− sin θ, 0, cos θ) . (7.162)

We shall consider a particle whose velocity is highly-relativistic. It will be recalled from

our earlier discussions that for such a particle, the electromagnetic radiation will be more

or less completely concentrated in the range of angles θ very close to 0. Thus, to a good

approximation we shall have ~e⊥ ≈ (0, 0, 1), which is the unit normal to the plane of the

circular motion. In what follows, we shall make approximations that are valid for small θ,

and also for small t. We shall also assume that v is very close to 1 (the speed of light).

From (7.157) and (7.159), we find

t− ~n · ~r0(t) = t− ρ cos θ sin
vt

ρ
≈ t− ρ(1− 1

2θ
2)
[vt
ρ

− 1
6

(vt
ρ

)3]
,

≈ (1− v)t+ 1
2θ

2vt+
v3t3

6ρ2
,

≈ 1
2 (1 + v)(1− v)t+ 1

2θ
2 t+

t3

6ρ2
,

=
t

2γ2
+ 1

2θ
2 t+

t3

6ρ2
. (7.163)

From (7.161), we find

~n× (~n× ~v) ≈ − t

ρ
~e‖ + θ ~e⊥ . (7.164)
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We therefore find from (7.156) that

d2I

dωdΩ
≈ e2ω2

4π2

∣∣∣− g‖(ω)~e‖ + g⊥(ω)~e⊥
∣∣∣
2
,

=
e2ω2

4π2

(
|g‖(ω)|2 + |g⊥(ω)|2

)
, (7.165)

where

g‖(ω) =
1

ρ

∫ ∞

−∞
t eiω[(γ

−2+θ2)t+
1
3 t

3ρ−2]/2 dt ,

g⊥(ω) = θ

∫ ∞

−∞
eiω[(γ

−2+θ2)t+
1
3 t

3ρ−2]/2 dt . (7.166)

Letting

u =
t

ρ
(γ−2 + θ2)−1/2 , ξ = 1

3ωρ(γ
−2 + θ2)3/2 , (7.167)

leads to

g‖(ω) = ρ(γ−2 + θ2)

∫ ∞

−∞
ue3i ξ(u+u

3/3)/2 du ,

g⊥(ω) = ρθ(γ−2 + θ2)1/2
∫ ∞

−∞
e3i ξ(u+u

3/3)/2 du . (7.168)

These integrals are related to Airy integrals, or modified Bessel functions:

∫ ∞

0
u sin[3ξ(u+ u3/3)/2] du =

1√
3
K2/3(ξ) ,

∫ ∞

0
cos[3ξ(u+ u3/3)/2] du =

1√
3
K1/3(ξ) ,

(7.169)

and so we have

d2I

dωdΩ
≈ e2ω2ρ2

3π2
(γ−2 + θ2)2

[
(K2/3(ξ))

2 +
θ2

γ−2 + θ2
(K1/3(ξ))

2
]
. (7.170)

The asymptotic forms of the modified Bessel functions Kν(x), for small x and large x,

are

Kν(x) −→ 1
2Γ(ν)

(2
x

)ν
; x −→ 0 ,

Kν(x) −→
√
π

2x
e−x ; x −→ ∞ . (7.171)

It therefore follows from (7.170) that d2I/(dωdΩ) falls off rapidly when ξ becomes large.

Bearing in mind that γ−2 is small (since the velocity of the particle is very near to the

speed of light), and that θ has been assumed to be small, we see from (7.167) that there is

a regime where ξ can be large, whilst still fulfilling our assumptions, if ωρ is large enough.

The value of ξ can then become very large if θ increases sufficiently (whilst still being small

compared to 1), and so the radiation is indeed concentrated around very small angles θ.
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If ω becomes sufficiently large that ωργ−3 is much greater than 1 then ξ will be very

large even if θ = 0. Thus, there is an effective high-frequency cut-off for all angles. It is

convenient to define a “cut-off” frequency ωc for which ξ = 1 at θ = 0:

ωc =
3γ3

ρ
=

3

ρ

( E
m

)3
. (7.172)

If the particle is following a uniform periodic circular orbit, with angular frequency ω0 =

v/ρ ≈ 1/ρ, then we shall have

ωc = 3ω0

( E
m

)3
. (7.173)

The radiation in this case of a charged particle in a highly relativistic circular orbit is known

as “Synchrotron Radiation.”

Consider the frequency spectrum of the radiation in the orbital plane, θ = 0. In the two

regimes ω << ωc and ω >> ωc we shall therefore have

ω << ωc :
d2I

dωdΩ

∣∣∣
θ=0

≈ e2
(Γ(2/3)

π

)2 (3
4

)1/3
(ωρ)2/3 ,

ω >> ωc :
d2I

dωdΩ

∣∣∣
θ=0

≈ 3e2γ2

2π

ω

ωc
e−2ω/ωc . (7.174)

This shows that the power per unit solid angle per unit frequency increases from 0 like ω2/3

for small ω, reaches a peak around ω = ωc, and then falls off exponentially rapidly one ω is

significantly greater than ωc.

It is clear that one could continue with the investigation of the properties of the syn-

chrotron radiation in considerably more depth. For example, would could consider the

detailed angular distibution of the radiation as a function of θ, and one could consider the

total power per unit frequency interval, obtained by integrating over all solid angles:

dI

dω
=

∫
d2I

dωdΩ
dΩ . (7.175)

A discussion of further details along these lines can be found in almost any of the advanced

electrodynamics textbooks.

7.9 Frequency spectrum for periodic motion

Suppose that the motion of the charged particle is exactly periodic, with period T = 2π/ω0,

where ω0 is the angular frequency of the particle’s motion. This means that ~n ·~r0(t) will be
periodic with period T , and so the factor e−iω ~n·~r0(t) in (7.156) will have time dependence

of the general form

H(t) =
∞∑

n=−∞
bn e

−inω0 t . (7.176)
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